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Abstract

Short-term energy storage systems, e.g., batteries, are becoming one promising option to deal with flexibility 

requirements in power systems due to the accommodation of renewable energy sources. Previous works using 

medium- and long-term planning tools have modeled the interaction between short-term energy storage systems 

and seasonal storage (e.g., hydro reservoirs) but despite these developments, opportunity costs considering the 

impact of short-term energy storage systems in stochastic hydrothermal dispatch models have not been analyzed. 

This paper proposes a novel formulation to include short-term energy storage systems operational decisions in a 

stochastic hydrothermal dispatch model, which is based on a Linked Representative Periods approach. The Linked 

Representative Periods approach disposes of both intra- and inter-period storage constraints, which in turn allow 

to adequately represent both short- and long-term storage at the same time. Apart from the novelty of the model 

formulation itself, one of the main contributions of this research stems from the underlying economic information 

that can be extracted from the dual variables of the intra- and inter-period constraints, which allows to derive an 

hourly opportunity cost of storage. Such a detailed hourly economic value of storage has not been proposed before 

in the literature and is not possible in a classic Load Duration Curve model that does not adequately capture short-

term operation. This advantage is reflected in the case study results. For instance, the model proposed in this paper 

and based on Linked Representative Periods obtains operating decisions of short-term energy storage systems 

with errors between 5% to 10%, while the classic Load Duration Curve approach fails by an error greater than 

100%. Moreover, the Load Duration Curve model cannot determine opportunity costs on an hourly basis and 

underestimates these opportunity costs of hydro (also known as water value) by 6% to 24% for seasonal hydro 

reservoirs. The proposed Linked Representative Periods model produces an error on the opportunity cost of hydro 

units lower than 3%. Hourly opportunity costs for short-term battery energy storage systems using dual variables 

from both intra- and inter-period storage balance equations in the proposed model are also presented and 
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analyzed. The case study shows that the proposed approach successfully internalizes both short- and long-term 

opportunity costs of energy storage systems. These results are useful for planning and policy analysis, as well as 

for bidding strategies of ESS owners in day-ahead markets and not taking them into account may lead to infeasible 

operation or to suboptimal planning.

Keywords

energy storage systems, power system planning, hydrothermal dispatch, representative days, water value, 

opportunity cost.

1. Nomenclature

1.1 Indices

𝑝 ∈ 𝒫 Periods (e.g., hours)

𝑚 ∈ ℳ Months

𝑀𝑃𝑚,𝑝 Set that relates hours and months

𝑤 ∈ 𝒲 Type of day in the week (e.g., weekdays or weekend)

𝑙 ∈ ℒ Load levels or load blocks

𝑟𝑝 ∈ ℛ𝒫 Representative periods (e.g., days)

𝑇𝑀𝑟𝑝',𝑟𝑝 Set that relates transitions among 𝑟𝑝

𝑘 ∈ 𝒦 Hours inside a representative period

𝐶𝐼𝑝,𝑟𝑝,𝑘 Set that relates hours with representative periods (i.e., cluster index)

𝑟 ∈ ℛ Reservoirs 

𝑔 ∈ 𝒢 Generators

𝑡 ⊂ 𝑔 Subindex of Thermal units

𝑠 ⊂ 𝑔 Subindex of Storage units 

𝑏 ⊂ 𝑠 Subindex of Short-term storage units (e.g., batteries)

ℎ ⊂ 𝑠 Subindex of Hydro units

𝐻𝑈𝑅ℎ,𝑟 Set with hydro plants that are upstream of a reservoir

𝐻𝑃𝑅ℎ,𝑟 Set with pumped hydro plants that are upstream of a reservoir

𝑅𝑈𝐻𝑟,ℎ Set with reservoirs that are upstream of a hydro plant

𝑅𝑃𝐻𝑟,ℎ Set with reservoirs that are upstream of a pumped hydro plant

𝑅𝑈𝑅𝑟,𝑟 Set with reservoirs that are upstream of another reservoir
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𝜔 ∈ 𝛺 Scenarios

𝑎(𝜔) Scenario tree relations

1.2 Parameters

𝑑 ∗ , 𝑜 ∗ Demand, operating reserve [MW]

𝑤𝑔 ∗ Load level duration or  weight [h]𝑟𝑝

𝑝𝑔,𝑝𝑔 Maximum, minimum output [MW]

𝑓𝑡, 𝑣𝑡 No load cost [$/h], variable cost [$/MWh]

𝑠𝑢𝑡,𝑠𝑑𝑡 Startup, shutdown cost [$]

𝑐ℎ,𝜂𝑠 Production function and efficiency [p.u.]

𝑟𝑟,𝑟𝑟 Maximum and minimum storage level of the reservoir [hm3]

𝑟'
𝑟 Initial and final storage level of the reservoir [hm3]

𝑠𝑜𝑐𝑏,𝑠𝑜𝑐𝑏 Maximum, minimum state of charge [p.u.]

𝑖𝜔
∗ ,𝑟 Stochastic hydro inflows [m3/s]

𝑝𝜔
∗ Scenario probability [p.u.]

𝑣' Energy not served cost [$/MWh]

𝑣'' Operating reserve not served cost [$/MWh]

1.3 Variables

𝑈𝐶𝜔
∗ ,𝑡,𝑆𝑈𝜔

∗ ,𝑡,𝑆𝐷𝜔
∗ ,𝑡 Commitment, startup, and shutdown {0,1}

𝑃𝜔
∗ ,𝑔 Production of generation units [MW]

𝑃'𝜔
∗ ,𝑡 Production above minimum output [MW]

𝐶𝜔
∗ ,ℎ, 𝐶𝜔

∗ ,𝑠 Consumption of a hydro/storage unit [MW]

𝑂𝜔
∗ ,𝑔 Operating reserve of generation unit

𝑅𝑖𝑛𝑡𝑟𝑎,𝜔
∗ ,𝑟 ,𝑅𝑖𝑛𝑡𝑒𝑟,𝜔

∗ ,𝑟  Intra and inter reservoir level [hm3]

𝑆𝜔
∗ ,𝑟 Reservoir spillage [hm3]

𝐸𝑁𝑆𝜔
∗ , 𝑅𝑁𝑆𝜔

∗ Energy and operating reserve not served [MW]

  𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔
∗ ,𝑏 , 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔

∗ ,𝑏 State-of-charge of a battery [p.u.]

In the previous nomenclature, “ ” refers to the parameters used to identify time divisions:  for hours in the detailed ∗ 𝑝

model,  in the load-levels model, and  in the linked representative periods model respectively.(𝑚,𝑤,𝑙) (𝑟𝑝,𝑘)

2. Introduction

Due to climate policy and the increasing reduction of renewable investment costs, power systems are transitioning 

to accommodate wind and solar generation, which will require system flexibility for balancing requirements to 
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maintain system performance [1]. Most ways to determine the value of flexibility of a power system, are based in 

running Unit-Commitment (UC) models [2]. In this work, UC constraints are considered in order to represent the 

value of this flexibility as the short-term opportunity cost in hydrothermal dispatch models. Since the current 

technologies have limited technical capabilities to provide this flexibility, new alternatives are required. In this 

context, short-term storage systems, e.g., Battery-based Energy Storage Systems (BESS) or Pumped-hydro 

energy storage (PHS), are one of the most promising options that can deliver technical and economic benefits in 

the electric power sector such as providing the required flexibility and reducing system operational costs [3]. For 

instance, authors in [4] have shown that PHS reduces the operational cost by 2.5–11% in a wind power integration 

context for the Great Canary island in Spain. Therefore, there are significant short-term opportunity costs that 

should be considered in the medium- and long-term planning (e.g., hydrothermal dispatch is the focus in this paper). 

However, these opportunity costs are not properly considered or simplified in the classical hydrothermal models. 

In this context, both flexibility requirements and short-term storage systems operation require chronological 

information in order to be properly addressed in medium- and long-term planning models. Some authors have 

made an effort to make this analysis by using representative periods in their models. For instance, authors in [5] 

use a representative day to study the allocation and investment of ESS while authors in [6] focus on how to select 

the representative periods considering renewable energy sources. This is a common and valid assumption for 

power systems with a low share of hydro generation. However, hydrothermal power systems are highly dependent 

on seasonal hydro storage. Therefore, the interaction between short-term storage (intra-day or intra-week) and 

seasonal storage is relevant to co-optimize the use of hydro generators with short-term storage units that can 

provide similar services, such as energy arbitrage and operating reserves procurement for flexibility requirements 

[7].

This research focuses on the representation of short-term operational decisions in hydrothermal dispatch models, 

how these decisions change the operational decisions, and opportunity costs of seasonal storage. These results 

are useful for planning and policy analysis, as well as for bidding strategies of ESS owners in day-ahead markets 

and not taking them into account may lead to infeasible operation or to suboptimal planning. For instance, an 

underestimation of the opportunity cost in hydro generation during the operational planning may lead to use more 

hydro production, which could represent a risk for the power system during a dry season. The results in Section 6 

show that classic hydrothermal dispatch models systematically underestimate the opportunity cost, while the 

proposed hydrothermal dispatch model significantly reduces this underestimation problem.

2.1 Literature Review

The hydrothermal dispatch problem aims at minimizing the total fuel cost of thermal generation units while properly 

dispatching the hydro and thermal generation units. There are two main types of models, the ones that are focused 
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on the long-term decision under hydro inflows uncertainty [8] and the ones that are focused on the short-term 

decisions considering detailed technical generation unit constraints [9].

On the one hand, the long-term hydrothermal dispatch problem aims at obtaining an optimal use of generation 

resources, most commonly under water inflows uncertainty, for the hydro and thermal generation units over a 

planning horizon considering multiple years [10]. Several models have been proposed for solving this problem in 

the literature, e.g., Ref. [8] is one of the classic references in this topic and more recently Ref. [11] gives a 

comprehensive review of different characteristics and model formulations on this topic. In addition, there are several 

commercial tools that aim to solve the hydrothermal dispatch problem that have been used in scientific research, 

such as: SDDP developed by PSR, PLEXOS Integrated Energy Model by Energy Exemplar, ProdRisk by SINTEF, 

NEWAVE by CEPEL [12], and StarNet Model by IIT [13]. For medium- or long-term studies, these tools use a Load 

Duration Curve (LDC) approach (also known as load-levels approach) with monthly or weekly stages. This is mainly 

due to the computational efficiency of LDC for large-scale systems. However, the LDC approach lacks 

chronological information within stages (e.g., weeks or months) and fails to represent short-term constraints (e.g., 

ramps, storage balance, etc.) [14].

On the other hand, the short-term hydrothermal dispatch aims at minimizing the fuel cost of thermal units for 1 day 

or 1 week while meeting various detailed hydraulic and electric system constraints, such as ramps, unit commitment 

[15], and nonlinear constraints of hydro units [9]. Although these approaches emphasize more the representation 

of short-term operation, they are not suitable to determine the opportunity cost of seasonal storage (also known as 

water value in the hydrothermal dispatch context) since their planning horizon covers only one week or less. 

However, short-term decisions may affect the operation of hydro reservoirs in the long term. Despite this situation, 

no relevant work has aimed to improve the representation of short-term operational decisions in long-term 

hydrothermal dispatch models. However and more recently, the representative periods (RP) method has been 

applied to long-term models in order to consider short-term decisions, such as renewable energy variability in the 

short-term [16] and UC constraints [17]. Generation dispatch and investment decisions are made for the selected 

periods (e.g., days or weeks) with a more detailed size of periods (hourly, for example). The RPs preserve the 

internal chronology of the hours, rendering a more realistic representation of changing storage levels over the 

course of a day or week. However, the basic definition of the RP does not preserve the chronology among them. 

Therefore, any Energy Storage System (ESS) with a full charge-discharge cycle longer than the RP (e.g., monthly 

or yearly) will not be adequately represented. In order to improve this situation, some authors have proposed 

methods to aggregate time series by modeling both intra-day and seasonal storage. For instance, the authors in 

[18] superpose inter-period and intra-period storage inventories to model short- and long-term ESS, while the 

authors in [19] proposed a hierarchical clustering method to maintain the chronology of the input time series 
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throughout the whole planning horizon to achieve the same goal. Moreover, the authors have proposed a linked 

RP model that also overcomes this shortcoming in [20]. Based on this last reference, a Linked Representative 

Periods (LRP) is proposed in this paper. By linking several RPs, it is possible to preserve some chronology among 

the RPs by superposing intra-period and inter-period storage balance equations. In addition, the selection of RPs 

is an important aspect of the RP approach. Some authors have proposed methods that optimize both the number 

and clustering of RPs to minimize the difference between the LDC and the approximate one created by the RPs 

[21]. The most versatile method for grouping RPs comes from [16] and relies on clustering techniques (e.g., k-

means or k-medoids) to group a number of hours with any number of normalized characteristics (solar energy, 

demand, wind energy, etc.). Furthermore, several authors have debated about the optimal length for RPs [22]. For 

instance, in [23], the authors suggested representative groups of days or representative weeks, which gives the 

advantage of increasing the amount of chronology preserved. However, the effectiveness of linking shorter RPs 

versus longer RPs has not been analyzed in the LRP approach. The impact of the proposed model and the 

conclusions are analyzed in Section 8.

These recent developments in the representative periods can be applied to the hydrothermal dispatch problem 

framework in order to overcome the lack of detailed short-term decisions in long-term hydrothermal dispatch 

models. Despite these developments in short-term and seasonal storage interaction, in the literature opportunity 

costs in stochastic hydrothermal planning models have not been analyzed taking into account the possible 

interaction of short-term dynamics in the long term. This research article focuses on this gap. Moreover, the 

interpretation of opportunity costs for energy storage systems is not as intuitive as in the LDC models due to the 

superposition of both balance equations, i.e., intra-period and inter-period. Therefore, the opportunity cost for 

energy storage, considering short- (intra-period) and long-term (inter-period) operation is defined and analyzed in 

the proposed LRP model. This definition of the opportunity cost using both balance equations has not been 

determined before in the literature, which computes separately the short- and long-term opportunity costs for energy 

storage. These results can be used to improve the operational planning of hydrothermal power systems in the 

context of a high share of renewables energy sources and flexibility resources such as the BESS.

The challenge that have been tackled in this paper is to obtain the hourly opportunity cost for storage technologies 

that usually operate on very different time scales. For example, BESS might have a full charge/discharge cycle 

within a couple of hours or days, whereas a seasonal hydro storage facility – depending on the size of the reservoir 

– could have cycles of weeks, months or even years. Other important aspects of hydrothermal dispatch models 

such as uncertainty modeling [24] are out of its scope. A general formulation is proposed based on stochastic 

programming, which is compatible with different techniques to solve the dimensionality problem such as scenario 

reduction [25] and stochastic dual dynamic programming [26].
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In this state-of-the-art context, the main contribution of this paper is the derivation and analysis of the hourly 

opportunity cost of storage technologies using the proposed LRP model, that improves the operational decisions 

in hydrothermal dispatch models. In other words, the LRP model can obtain an approximation of the ESS hourly 

opportunity cost within the studied time horizon without solving an hourly model. Moreover, the LRP model has the 

advantage that it obtains hourly detailed opportunity cost for different types of ESS technologies which operate on 

different time scales (hydro versus battery). This is a novel contribution since, so far, this has not been possible 

because classic LDC-type models lack chronological information among individual hours belonging to different load 

levels. Moreover, due to the reduction of temporal information in the proposed hydrothermal LRP model, this model 

is suitable for application on real-life case studies. This is relevant because it means that the proposed model can 

include short-term details that impacts the long-term operational and economic decisions without solving an hourly 

detailed model and in an efficient computational time.

An hourly model (HM) is used as a benchmark to compare our proposal to the classic LDC model and then to 

quantify the improvements in a stylized Spanish hydrothermal system. The HM can be solved for small case 

studies, however, in practice, for large-scale case studies it may not be possible to be solved.

The remainder of the paper is organized as follows: Sections 3 and 4 describe the main concepts in hydrothermal 

dispatch models and explain the main differences among the three models in this paper: the hourly model (HM) 

(the benchmark model), load duration curve model (LDC) (the classic model), and linked representative periods 

(LRP) (the novel model proposed in this paper). Section 5 defines the short-term storage value and water value 

definition for the LRP model. The definition of the hourly opportunity cost of different storage technologies 

represents one of the main contributions of this paper as it represents the storage opportunity cost extracted from 

hydrothermal dispatch models that accounts for both short- and long-term dynamics of the power system. Section 

6 analyzes the results in a stylized Spanish case study based on European data for the year 2030. Section 7 

discusses the coordination between short- and medium-term models in the LDC model and its equivalent in the 

proposed LRP model.

3. Hydrothermal Topology and Scenario Tree

In the context of hydrothermal dispatch, it is important to establish the hydro topology in order to determine the 

relationship among the water basins because of its impact on the dispatch and on the opportunity cost (also known 

as water value) in hydro generators. Fig. 1 shows an example hydro topology where three reservoirs (r1, r2, r3), 

including their hydro units (h1, h2, h3), are related among them. For instance, reservoir r3 receives its hydro inflows, 

turbined water and spilled water from reservoirs r1 and r2, and the pumped water from its own hydro unit h3.
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r1 r2

r3

inflows
Spillage from 
r2 to r3

h1 h2

h3

Turbined water 
from h1 and h2 

to r3

Turbined water 
from h3

Spillage from 
r1 to r3

Pumped water 
from h3 to r3 Pumped water 

from h3 to r2

Fig. 1. Example of hydro topology or water basin

The main source of uncertainty in hydrothermal power systems is the water inflow [8]. This uncertainty is normally 

represented as a scenario tree [24], in which each node in the tree represents a hydro inflow level with a certain 

probability. In addition, the nodes are related among them, creating different scenarios to sample different 

realizations of the hydro inflows. Fig. 2 shows an example of a simple scenario tree with three scenarios: wet 

season, average inflows, dry season. In this example, the first stage decisions are taken in the first month 

represented in the tree (i.e., October) and the second stage decisions are taken for the following months. In 

addition, for each month in the second stage there are three different values of hydro inflows from each scenario.

Oct Nov Dic Jan Aug Sep

Scenario 1 – Average inflows
Probability = 0.5

Scenario 2 – Low inflows (dry season)
Probability = 0.3

Scenario 3 – High inflows (wet season)
Probability = 0.2

First 
Stage

Second 
Stage

Fig. 2. Scenario tree example

Both hydro topology and scenario tree shown in this section are used as a reference in the remainder of this paper.

4. Model Formulation
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Three optimization models are presented and solved in this paper using a stochastic formulation: An Hourly Model 

(HM), which is used as a benchmark, the classic Load Duration Curve (LDC) model, and the proposed Linked 

Representative Periods (LRP). The objective function and constraints of each model are detailed in the Appendix.

Fig. 3 shows an overview of the analysis carried out in this paper. Hourly demand, wind, and solar time series are 

used as input data. Therefore, the HM model can be solved to obtain the benchmark results. In addition, two 

different clustering procedures are applied per each node of hydro inflow uncertainty, (i.e., per month) in order to 

obtain the input data necessary for the LDC and the LRP model respectively. First, individual hours are clustered 

in order to obtain the load levels for the LDC model per month. Second, the time series are grouped by periods 

(e.g., for the case study, representative days are considered) and then they are clustered in order to obtain the 

representative periods for the LRP model per month. Finally, the hourly results of each model are compared to 

determine the quality of the approximations in terms of objective function, productions, energy stored, and dual 

variables (e.g., prices, storage value, and water value).

Input: Hourly time 
series per month

Demand
Wind production
Solar production

Hourly Optimization 
model

Load Duration Curve 
(LDC)

Individual Hours 
Clustering Process

Hourly results

Hourly results obtained 
ex-post

Comparative
analysis

Group of Days 
Clustering Process

Enhanced Representative 
Periods (LRP)

Fig. 3. Analysis overview: comparison of LDC and LRP models

It is important to highlight that both load levels and representative periods are selected per month because the 

uncertainty in the hydro inflows is per month, see Fig. 2. Scenario tree example

Therefore, the load levels and representative periods are different among months. This is guaranteed through a 

time division structure in both models. Fig. 4 shows an example of the structure of the LDC model, where two 
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months ( , ) have a subdivision in weekdays ( ) and weekend ( ), each one with three different load levels 𝑚1 𝑚2 𝑤1 𝑤2

( , , ).𝑙1 𝑙2 𝑙3

𝑙1 𝑙2
𝑙3

𝑙1 𝑙2
𝑙3

𝑤1
𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑠

𝑤2
𝑤𝑒𝑒𝑘𝑒𝑛𝑑

𝑚1

𝑙1 𝑙2
𝑙3

𝑙1 𝑙2
𝑙3

𝑤1
𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑠

𝑤2
𝑤𝑒𝑒𝑘𝑒𝑛𝑑

𝑚2

M
W

Fig. 4. Structure of LDC time division

Fig. 5 shows an example of the structure for the LRP model, where the two months have their own representative 

periods (i.e.,  and  for , and  and  for ), each one with a set of chronological hours (  to  in a 𝑟𝑝1 𝑟𝑝2 𝑚1 𝑟𝑝3 𝑟𝑝4 𝑚2 𝑘1 𝑘24

24-hour representative period example).

             𝑘1… …𝑘24              𝑘1… …𝑘24

M
W

𝑟𝑝1

𝑚1

M
W

𝑟𝑝2

M
W

             𝑘1… …𝑘24

𝑟𝑝3

             𝑘1… …𝑘24
M

W
𝑟𝑝4

𝑚2

Fig. 5. Structure of LRP time division

These time divisions facilitate the formulation of storage balance constraints in both models considering the 

scenario-tree structure. Sections 4.1 to 4.8 show the storage balance constraints in the three optimization models. 

Although the detailed optimization models are shown in appendices A to C, the storage balance equations are 

shown here to help understand the analysis in the following sections.

4.1 Long-term Energy Storage Balance Constraint in the Hourly Model

𝑅𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑝 ― 1𝑟 ― 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔

𝑝𝑟 + 𝑖𝜔
𝑝𝑟 ― 𝑆𝜔

𝑝𝑟 + ∑
𝑟' ∈  𝑅𝑈𝑅𝑟',𝑟

𝑆𝜔
𝑝𝑟'

𝑊𝑎𝑡𝑒𝑟 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

+

∑
ℎ ∈  𝐻𝑈𝑅ℎ,𝑟

𝑃𝜔
𝑝ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠

― ∑
ℎ ∈  𝑅𝑈𝐻𝑟,ℎ

𝑃𝜔
𝑝ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑  𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

+

 ∑
ℎ ∈  𝐻𝑃𝑅ℎ,𝑟

𝐶𝜔
𝑝ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑡𝑜 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

― ∑
ℎ ∈  𝑅𝑃𝐻𝑟,ℎ

𝐶𝜔
𝑝ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

= 0   ∀𝜔𝑝𝑟  𝜔'𝜖 𝑎(𝜔)

(1)

4.2 Short-term Energy Storage Balance Constraint in the Hourly Model

 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑝 ― 1𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔

𝑝𝑏 ― 𝑃𝜔
𝑝𝑏 + 𝐶𝜔

𝑝𝑏 = 0   ∀𝜔𝑝𝑏   𝜔'𝜖 𝑎(𝜔) (2)

4.3 Long-term Energy Storage Balance Constraint in the Load Duration Curve
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𝑅𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1𝑟 ― 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑟 + 𝑖𝜔
𝑚𝑟 ― 𝑆𝜔

𝑚𝑟 + ∑
𝑟' ∈  𝑅𝑈𝑅𝑟',𝑟

𝑆𝜔
𝑚𝑟'

𝑊𝑎𝑡𝑒𝑟 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

+

∑
𝑤𝑙

∑
ℎ ∈  𝐻𝑈𝑅ℎ,𝑟

𝑤𝑔𝑚𝑤𝑙 ∙ 𝑃𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠

― ∑
𝑤𝑙

∑
ℎ ∈  𝑅𝑈𝐻𝑟,ℎ

𝑤𝑔𝑚𝑤𝑙 ∙ 𝑃𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑  𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

+

 ∑
𝑤𝑙

∑
ℎ ∈  𝐻𝑃𝑅ℎ,𝑟

𝑤𝑔𝑚𝑤𝑙 ∙ 𝐶𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑡𝑜 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

― ∑
𝑤𝑙

∑
ℎ ∈  𝑅𝑃𝐻𝑟,ℎ

𝑤𝑔𝑚𝑤𝑙 ∙ 𝐶𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

= 0   ∀𝜔𝑚𝑟   𝜔'𝜖 𝑎(𝜔)

(3)

4.4 Short-term Energy Storage Balance Constraint in the Load Duration Curve

 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑏 ― ∑
𝑤𝑙𝑤𝑔𝑚𝑤𝑙 ⋅ 𝑃𝜔

𝑚𝑤𝑙𝑏 + ∑
𝑤𝑙𝑤𝑔𝑚𝑤𝑙 ⋅ 𝐶𝜔

𝑚𝑤𝑙𝑏 = 0   ∀𝜔𝑚𝑏   𝜔'𝜖 𝑎(𝜔) (4)

4.5 Intra-period Balance Constraint for Long-term Energy Storage in the Linked Representative Periods

𝑅𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑟 ― 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑟 + 𝑖𝜔
𝑟𝑝,𝑘,𝑟 ― 𝑆𝜔

𝑟𝑝,𝑘,𝑟 + ∑
𝑟' ∈  𝑅𝑈𝑅𝑟',𝑟

𝑆𝜔
𝑟𝑝,𝑘,𝑟'

𝑊𝑎𝑡𝑒𝑟 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

+

∑
ℎ ∈  𝐻𝑈𝑅ℎ,𝑟

𝑃𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠

― ∑
ℎ ∈  𝑅𝑈𝐻𝑟,ℎ

𝑃𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑  𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

+

 ∑
ℎ ∈  𝐻𝑃𝑅ℎ,𝑟

𝐶𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑡𝑜 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

― ∑
ℎ ∈  𝑅𝑃𝐻𝑟,ℎ

𝐶𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

= 0   ∀𝜔,𝑟𝑝,𝑘,𝑟   𝜔'𝜖 𝑎(𝜔)

(5)

4.6 Inter-period Balance Constraint for Long-term Energy Storage in the Linked Representative Periods

 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1,𝑟 ― 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑟 + ∑
(𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}[𝑅𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑟 ― 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑟] = 0   ∀𝜔𝑚𝑟   𝜔'𝜖 𝑎(𝜔) (6)

4.7 Intra-period Balance Constraint for Short-term Energy Storage in the Linked Representative Periods

 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑏 ― 𝑃𝜔
𝑟𝑝,𝑘,𝑏 + 𝐶𝜔

𝑟𝑝,𝑘,𝑏 = 0   ∀𝜔,𝑟𝑝,𝑘,𝑏   𝜔'𝜖 𝑎(𝜔) (7)

4.8 Inter-period Balance Constraint for Short-term Energy Storage in the Linked Representative Periods

 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1,𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑏 + ∑
(𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}[𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑟 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑟] = 0   ∀𝜔𝑚𝑏   𝜔'𝜖 𝑎(𝜔) (8)

4.9 Comparison of Storage Balance Constraints Among the Models

Here the previous constraints are analyzed for each model. First, in the HM model, the storage balance constraints 

are imposed for each period , equations (1) and (2). Therefore, reservoir level and SoC are determined for each 𝑝

hour in the time horizon. These results are used as a benchmark to test the LDC and LRP model, see Fig. 3. 

Constraints for LTESS and STESS are stated for , which allows to relate the different scenarios through 𝜔'𝜖 𝑎(𝜔)

the scenario tree. For instance, Fig. 2 shows a scenario tree with three scenarios: wet season, average inflows, 

dry season. In this example, the ancestor  of scenario 3 in November is scenario 1 in October. Therefore, the 𝑎(𝜔)

set  is relating a scenario with the corresponding predecessor scenario in the tree.𝑎(𝜔)

Second, in the LDC model, both storage balance equations (3) and (4) (i.e., LTESS and STESS) include the load-

level duration ( ) to consider the number of hours that are represented for each load level. In other words, the 𝑤𝑔𝑚𝑤𝑙

multiplication by  guarantees that all the charged/discharged energy is considered within the month . These 𝑤𝑔𝑚𝑤𝑙 𝑚
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equations are for the inter-period variables. Intra-period variables are not available in this model due to the lack of 

chronology within the month .𝑚

Third, in the LRP model, the storage balance constraints are defined for inter- and intra-periods, equations (5)-(8). 

These equations create the continuity in storage across the entire time horizon that allows for the modeling of short-

term and long-term storage simultaneously. Intra-period constraints (7)-(8) ensure the storage balance within the 

RP, while inter-period constraints guarantee the storage balance between representative periods by checking at 

regular intervals (e.g., aggregation of hours such as months ) that all the energy charged and discharged since 𝑚

the previous month plus the total energy at the last checkpoint are within bounds. This is possible because the 

cluster index, , and the relationship between periods and months, , are known as a result of the 𝐶𝐼𝑝,𝑟𝑝,𝑘 𝑀𝑃𝑚,𝑝

clustering procedure to determine the RPs. The intersection of both sets  indicates which RPs {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}

belong to the month and, therefore, must be considered in the inter-period balance.

Finally, notice that constraints for LTESS and STESS are equivalent if, for example, a hydro reservoir has a pump 

unit which is not in a hydro basin and it has no hydro inflows. However, both constraints are kept in order to facilitate 

the distinction between both types of storage technologies. In real hydro power plants, there is a nonlinear 

dependence between the reservoir head and the reservoir volume [13]. Nevertheless, and for the sake of simplicity 

in storage balance constraints for LTESS, a linear function of the turbine outflow is assumed. Although nonlinear 

dependence could be considered at the expense of more complex optimization models such as in [13].

5. Analysis of Energy Storage Opportunity Cost 

The energy storage opportunity cost is the substitution cost of the stored energy that can be calculated as the 

decrease on total system cost when an extra energy storage unit is available, also known as dual approach [27]. 

In hydrothermal dispatch context, this value is determined by the thermal generation unit that is replaced by the 

energy storage unit, i.e., hydro generation.

In Section 4, three models have been formulated for the hydrothermal dispatch as Mixed Integer Programming 

(MIP) problems. This is a frequent approach in short-term hydrothermal scheduling in order to consider practical 

limitations of the generation units such as ramps and UC constraints [28]. However, as it is mentioned in [27], the 

value of dual variables in a MIP is not well-defined. Hence, it is a common practice to approximate the dual variables 

of interest by fixing the integer variables (e.g., commitment decisions) obtained in the MIP solution and then solving 

the model again as a Linear Programming (LP) problem [13]. Under this assumption, the opportunity cost of ESS 

can be obtained from the dual variable of the storage balance equations of each model, while the opportunity cost 

of hydro reservoirs is normally called water value [27]. However, the name water value cannot be applied to BESS 

since there are no hydro inflows for this type of technology. Instead, the storage value is used to describe the 

opportunity cost of short-term storage (i.e., BESS).
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 Hourly Model (HM): The opportunity cost for each type of storage is obtained from the dual variables of 

equations (1) and (2). Therefore, water value  is obtained from (1) and storage value  from (𝜇𝑖𝑛𝑡𝑟𝑎,𝜔
𝑝𝑟 ) (𝜇𝑖𝑛𝑡𝑟𝑎,𝜔

𝑝𝑏 )

(2). These opportunity costs are for each hour in the time horizon.

 Load Duration Curve Model (LDC): Water value  is obtained from (3) and storage value  (𝜇𝑖𝑛𝑡𝑒𝑟,𝜔
𝑚𝑟 ) (𝜇𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑏 )

from (4). Since there is no chronology between load levels, the opportunity cost for each type of storage is 

obtained only for an aggregation of hours (e.g., months).

 Linked Representative Periods Model (LRP): This model has two balance equations for each storage 

technology. One for the storage balance inside the representative period (intra-period) and another for the 

storage balance through the aggregation of hours in the time horizon (inter-period). Each balance equation 

has its dual variable; however, the combination of both dual variables is necessary to determine the hourly 

dual variable that is comparable to the one obtained from the HM model. Equation (9) defines the hourly 

storage/water value for short- and long-term storage using the LRP model.  is obtained from the dual 𝜇𝑖𝑛𝑡𝑟𝑎,𝜔
𝑟𝑝,𝑘,𝑠

variables of (5) and (7) for hydro reservoirs and BESS, respectively. In the same way,  is obtained 𝜇𝑖𝑛𝑡𝑒𝑟,𝜔
𝑚,𝑠

from the dual variables of (6) and (8). Equation (9) shows the opportunity cost of energy storage as a linear 

combination of short- (intra-period balance) and long-term decisions (inter-period balance). Therefore, the 

LRP model distinguishes the impact of short-term decisions within the total opportunity cost, which is not 

possible in the HM model. Section 7 shows the relevance of (9) in the opportunity cost of storage since it 

allows to differentiate the share of short- and long-term economic information in this opportunity cost.

𝜇𝑖𝑛𝑡𝑟𝑎,𝜔
𝑝𝑠 = ∑

(𝑟𝑝,𝑘) ∈ 𝐶𝐼𝑝,𝑟𝑝,𝑘

   ∑
𝑚 ∈ 𝑀𝑃𝑚,𝑝

1

𝑝𝜔
𝑚

∙ (𝜇𝑖𝑛𝑡𝑟𝑎,𝜔
𝑟𝑝,𝑘,𝑠

𝑤𝑔𝑟𝑝
+ 𝜇𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚,𝑠 )   ∀𝜔𝑝𝑠
(9)

6. Case study and Results

As a case study, a stylized Spanish power system in target year 2030 is chosen. The Spanish case is relevant 

because it has hydro reservoirs (i.e., seasonal storage) and, according to ENTSO-E [29], the next ten years will 

likely bring investment in Battery Energy Storage System (BESS), i.e., short-term energy storage. The wind and 

solar profiles were taken from [30] and [31] respectively, while hourly demand data and annual production per 

technology were taken from the vision 1 in the ENTSO-E Ten Year Network Development Plan 2016 [29]. For the 

sake of simplicity, the case study is represented as a single node example. The transmission network may change 

the results in the case study, especially if there is any congestion; however, since transmission network constraints 

have already been successfully included in the classic hydrothermal LDC model [32] as well as in the former version 

of the LRP model [20], they are omitted here. In addition, Ref. [33] shows that network congestion improves the 
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accuracy of the clustering techniques to reduce temporal information, such as the ones used in this paper for the 

proposed hydrothermal LRP model.

The water basin is represented by three reservoirs. Reservoirs 1 and 2 are upstream of reservoir 3, and, therefore, 

reservoir 3 receives, besides its hydro inflows, the hydro production and water spillage from reservoirs 1 and 2, 

such as in Fig. 1. The scenario tree is a simplified structure of three scenarios in order to consider monthly hydro 

inflows in dry, average, and wet seasons, see Fig. 2. The probabilities for each scenario are 30%, 50%, and 20%, 

respectively. The first-stage decision is taken for October1 and second-stage decisions are taken from November 

to September. For the sake of simplicity, the stability of the solution for different scenario trees is not verified. This 

will be addressed in future research to determine the impact of different scenario trees in the results.

Load levels and representative periods are obtained via the k-means clustering procedure for each month. The 

clusters were chosen by normalizing time series for the hourly demand, wind availability, and solar availability, see 

Fig. 3. For the LL model, 12 load levels (6 for weekdays and 6 for the weekend) per month have been defined. For 

the LRP model, some sensitivities for the selection of the representative periods have been defined: 1 

representative period with 24h per month (1RPx24h), 1 𝑟𝑝 with 48h per month (1RPx48h), 1 𝑟𝑝 with 96h per month 

(1RPx96h), 2 𝑟𝑝 with 24h per month (2RPx24h), and 4 𝑟𝑝 with 24h per month (4RPx24h). These sensitivities are 

performed in order to identify if it is better to have only one 𝑟𝑝 per month sharing information or to have more 𝑟𝑝 

per month sharing information among them and between months. Based on previous results in [20], more 𝑟𝑝 per 

month sharing information may be better than one 𝑟𝑝 per month.

Finally, a BESS with a power rating of 200MW, energy capacity of 4 hours, and round-trip efficiency of 90% is 

considered. The BESS is installed to deal with hourly variation of variable renewable energy sources.

6.1 Objective Function and Time to Solve

Table 1 shows the results using as a reference the results obtained for the HM. The objective function error is 

calculated using the value of the objective function of the hourly model as the theoretical value, while the CPU time 

is shown as a fraction of the time taken by the hourly model to solve the problem. All models were solved until 

optimality, i.e., until either their optimal point or the integrality gap equaled zero.

The analysis of the results shows two main situations. First, the LRP 4RPx24h as the best performance in terms 

of the objective function. The objective function error is lower than 1% compared to the HM model, and it only takes 

one tenth of the time to solve. In addition, all the LRP results for the different sensitivities have objective function 

errors lower than 4%. Second, although the LDC is one of the fastest models to solve the problem, its objective 

1 October is the beginning of the hydrological year in Spain.
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function error exceeds 10%.2 Therefore, the LRP improves the results of the hydrothermal dispatch problem without 

hampering the computational efficiency.

The results obtained for the sensitivities of the LRP model confirm that more 𝑟𝑝s per month sharing information is 

better than one longer 𝑟𝑝 per month. For instance, the 1RPx48h and 2RPx24h take the same number of hours per 

month and produce similar CPU time performance. However, the objective function error in 2RPx24h is half of that 

obtained with 1RPx48h. Therefore, and for the sake of simplicity, only the LRP 4RPx24h model results are shown 

in the following sections.

Table 1. Objective Function Error and CPU Time

LRP
4RPx24h

LRP
2RPx24h

LRP
1RPx96h

LRP
1RPx48h

LRP
1RPx24h LDC

OF Error [%] 0.1 1.7 3.4 3.6 3.6 11.7

CPU Time [p.u.] 0.10 0.02 0.05 0.02 0.01 0.01

6.2 First- and Second-Stage Production Results

Table 2 shows the errors in production per technology for both LDC and LRP model. Negative values indicate an 

underestimation in comparison to the HM result, while positive values indicate an overestimation. The black color 

is used to highlight absolute values lower or equal to 5%, light orange color for absolute values greater than 5% 

and lower or equal to 10%, and the dark red color for absolute values higher than 10%. Technologies such as coal 

and fuel oil are not shown because their total production is negligible. Additionally, technologies such as wind, 

solar, and run-of-river are also not shown, in this case because the total production error is lower than 1% in both 

models.

The results are classified into two groups: first and second stage. The LRP model has better results than LDC 

model in both groups. In fact, BESS production error in the LRP model is almost ten times lower than the result 

with the LDC model for the first stage, and almost twenty times smaller for the second stage. The Open Cycle Gas 

Turbine (OCGT) is more difficult to estimate in both models because it is the peak technology, and yet the LRP 

improves the approximation made by the LDC.

The LDC model underestimates Combined Cycle Gas Turbine (CCGT) production (marginal technology most of 

the time) due to the loss of chronology among the load levels that overestimates BESS production, see Table 2. 

This leads to an underestimation of BESS storage values, see Table 2. On the other hand, the CCGT production 

error in the LRP model is lower than 5% as well as the BESS storage value in Table  thanks to the more accurate 

2 Considering twice the number of LL, the LDC objective function error reduces to an error of 6%, but the CPU time increases six-fold. 
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representation of chronological constraints. These results show the interdependence between the marginal 

technologies and the BESS storage value.

Table 2. Total Production Error per Technology [%]

First Stage Second Stage
Tech

LDC LRP LDC LRP
Sc1 2.9 Sc1 -0.3

Sc2 2.8 Sc2 -0.4Nuclear 4.6 1.7

Sc3 3.3 Sc3 -0.7

Sc1 -8.6 Sc1 -3.5

Sc2 -5.7 Sc2 -4.4CCGT -35.8 -0.5

Sc3 -6.8 Sc3 -2.6

Sc1 -68.4 Sc1 -49.0

Sc2 -44.3 Sc2 -0.5OCGT -30.7 -22.7

Sc3 -68.8 Sc3 -16.9

Sc1 -0.4 Sc1 -0.3

Sc2 0.6 Sc2 -0.5Hydro -5.5 -4.3

Sc3 -0.3 Sc3 -0.3

Sc1 133.9 Sc1 -5.4

Sc2 115.1 Sc2 -5.1BESS 110.9 9.1

Sc3 123.7 Sc3 4.6

6.3 Hydro Reservoir and State-of-Charge Results

In this section, the storage level is analyzed for both technologies, i.e., hydro (seasonal storage) and BESS (short-

term storage). First, storage level for hydro reservoir is approximated with more accuracy in the LRP model 

compared to the LDC model. For instance, Fig. 6 (top) shows the storage level for reservoir 2 in scenario 1 for both 

models in comparison to the HM model. The storage-level-average error over all the scenarios and reservoirs is 

4.5% for the LRP model and 9.0% for the LDC model. Therefore, the LRP model is twice as accurate as the LDC 

model for the reservoir levels.

Second, the hourly BESS SoC can be obtained for the LRP model, which is not possible with the LDC model. Fig. 

6 (middle) shows the hourly evolution of the SoC in a particular week for the HM and the LRP model. It is possible 

to observe the daily cycles of the BESS and how the LRP model results mimic the HM solution. The total number 
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of cycles3 obtained from each model in the target year are compared in Fig. 6 (bottom). This figure shows the total 

number of cycles per scenario for each model. The total number of cycles determined from the LDC results doubles 

the number obtained with the HM model, which was expected due to the overestimation in the BESS production 

shown in Table 2. By contrast, the average error in the number of cycles for the LRP model is 5%. This result is 

important because the number of cycles is key to determine replacement or maintenance in BESS.

Fig. 6. Reservoir Level [p.u.] (top). BESS SoC [p.u.] over a week (middle). Total number of cycles for the BESS 
(bottom)

6.4 Marginal and Opportunity Costs

Table 3 shows the errors with Stochastic Marginal Cost (SMC) and Opportunity Cost (OP). The HM results have 

been chosen as a reference for the error calculation. The SMC is calculated as the weighted dual variable from the 

balance equation in each model. The OP is calculated as the weighted dual variable from the inter-period storage 

3 The cycles are estimated for all models using the total charge/discharge energy over the year and dividing it by the BESS’ maximum energy 
capacity.
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balance equation in each model, equations (3), (4), (6), and (8). The same color notation as in Table 2 is used. On 

the one hand, the LRP model mostly leads to errors lower than 5% and is the most accurate model in almost all 

results. On the other hand, the LDC model yields in most of the cases errors higher than 10% and, as expected 

from the results in previous sections, exhibits the worst performance in the opportunity cost of the BESS throughout 

the time horizon, overestimating most of the months the economic signal of energy storage.

Table 3. Stochastic Marginal Cost and Opportunity Cost Results – Error [%]

SMC OP Res 1 OP Res 2 OP Res 3 OP BESS
Month

LDC LRP LDC LRP LDC LRP LDC LRP LDC LRP
Oct -13.7 1.3 -16.3 -0.6 -6.6 -0.6 -23.9 2.8 -6.7 -2.0

Nov -4.7 -2.0 -16.3 -0.6 -6.6 -0.6 -23.9 2.8 -4.7 -0.4

Dec -28.5 0.3 -16.3 -0.6 -6.6 -0.6 -23.9 2.8 -16.3 -3.6

Jan -10.8 -1.3 -17.7 -2.4 -8.2 -2.4 -22.6 -1.2 -32.2 -0.9

Feb -8.7 0.7 -12.5 -0.4 -8.2 -0.4 -22.6 -1.0 -32.4 -3.1

Mar -13.5 6.6 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -27.4 5.6

Apr -9.5 0.6 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -29.0 -3.2

May -14.0 0.2 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -26.7 0.0

Jun -9.4 1.4 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -26.3 4.3

Jul -23.1 2.0 -12.5 -0.4 -8.2 -0.4 -21.4 -1.0 -37.9 4.3

Aug -13.8 4.7 -11.9 1.2 -6.9 -0.6 -22.3 -1.4 -30.2 1.9

Sep -15.0 1.5 15.4 0.4 -6.9 -0.6 6.0 0.3 -28.8 -0.9

Mean Absolute
Error

13.7 1.9 14.1 0.7 7.6 0.7 21.0 1.4 24.9 2.5

The errors in reservoir 3 are higher than those in reservoir 1 and 2. This is a reasonable result, considering that 

reservoir 3 is downstream of reservoir 1 and 2. Therefore, errors in reservoirs 1 and 2 propagate to reservoir 3 and 

complicate the estimation.

In Section 5, the equation (9) has been presented, which allows us to determine the intra-period or hourly 

opportunity cost in the LRP model. This represents the main advantage over the LDC. Fig. 7 shows the opportunity 

cost (or storage value) of BESS in the HM, LRP, and LDC models for a particular week. The opportunity cost 

obtained from the LRP model mimics the trend followed by the results in the HM model. In fact, almost 75% of the 

time, the difference between the results of both models is lower than 10%. Fig. 7 shows one value for the LDC 

model throughout the week because it only determines one opportunity cost value per month, see equations (3) 

and (4).
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Fig. 7. Opportunity Cost or Storage Value of BESS [€/MWh]

7. Discussion

The main drawback of the previous result is that the medium-term model, i.e., LDC model, does not consider short-

term chronological information. In fact, as shown in Section 6, the LDC model has the worst performance. All the 

time resolutions tested for the LRP model have shown a better performance than the LDC model. This means that 

LRP succeeds in the internalization of short-term chronological information in the medium-term hydrothermal 

problem, which enables inclusion of the operation of BESS without solving the HM model for the entire medium-

term horizon. In other words, the LRP model co-optimizes both medium- (or long-) and short-term decisions. 

Moreover, equation (9) in the LRP has the advantage that it allows to differentiate between both components: intra-

period and inter-period opportunity cost and therefore, know the share of each component in the total opportunity 

cost. Fig. 8 (top) shows the share of these components in the E-RP model for the same week in Fig. 7. Most of the 

time, the inter-period value represents more than 90% of the total value through the week, while the intra-period 

value gets more relevance, near 40%, at the end of the week (around hour 156), when the opportunity cost has 

the biggest change in Fig. 7. However, this share in the composition cannot be taken as a general behavior. For 

instance, Fig. 8 (bottom) shows results for another week in the same case study. Here, it can be observed that 

there are hours where the intra-period represents the 100% of the total value of the opportunity cost in the BESS. 

Therefore, the share changes depending on the characteristics of the case study as well as the location within the 

time scope. These types of results and analysis cannot be developed in the classic LDC model and represent a 

novel contribution in this research. This contribution opens the door to new analysis and studies. For instance, 

these results give insights to market participants of when short-term storage opportunities are more relevant than 

long-term storage opportunities and then considering this situation in their market bids.
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Fig. 8. Share of Inter/Intra Values in total Opportunity Cost of BESS

Another important aspect to discuss is that the coordination of short- and medium-term hydrothermal models has 

been traditionally performed by using two separate models and sharing information between them as in [34] and 

more recently in [35]. One medium-term model is run first using a reduced chronology, such as the LDC model 

described in Appendix B, in order to obtain the end volume or the water value from each reservoir. Under the 

assumption that a Stochastic Dual Dynamic Programming (SDDP) [36] approach has been used to solve the 

medium-term model, a piecewise-linear Future Cost Function (FCF) can be utilized to meet end-point conditions 

from the medium-term model in the short-term model as it was formerly proposed in [37] and more lately in [38]. 

This information is used as input data in a short-term model to find the daily levels and hourly opportunity costs.

Finally, the LRP model is also compatible with decomposition techniques, such as Benders' decomposition or 

SDDP, in order to consider a large number of scenarios in the scenario tree. Therefore, it could be obtained the 

FCF internalizing the hourly dynamics of short-term storage, which is not possible with the current LDC model 

approach.

8. Conclusion

This paper introduces a novel formulation for stochastic hydrothermal models in which short-term opportunity costs 

are included in the medium- and long-optimization process. It has been validated the initial hypothesis, that short-

term energy storage (e.g., BESS) decisions on energy production impact the opportunity cost (or water value) of 

seasonal storage. In the presented case study, in a comparison with a detailed hourly model used as benchmark, 

the classic LDC approach systematically underestimates the water value between 6% and 24% for seasonal hydro 

reservoirs, while the proposed LRP model error varies between 0% and 6.6%, sometimes underestimating and 

others overestimating. In addition, operational results (e.g., productions, number of cycles for short-term storage, 



Journal Pre-proof

 

 

 

21

and storage levels) have a better estimation in the LRP model than in the LDC model. Another advantage of the 

proposed model is the possibility to obtain hourly detailed opportunity costs of ESS without solving an hourly 

hydrothermal dispatch model. Moreover, the proposed model formulation allows to differentiate between the short- 

and long-term opportunity costs. For instance, the results show that depending on the hour, the intra-period storage 

value (short-term opportunity cost) constitutes up to 100% of the total opportunity cost, demonstrating that inter-

period opportunity cost may be also relevant for the long-term storage value. The derivation of an hourly opportunity 

cost of ESS that accounts for both short- and long-term dynamics represents a novel contribution, as it is not 

possible to obtain its value from a classic LDC model. In addition, the temporal reduction using the linked 

representative periods in the proposed LRP model makes it also suitable to solve real-size case studies. 

Furthermore, long-term opportunity costs due to hydro seasonality in power system internalize the hourly 

opportunity costs. In other words, the water value in seasonal storage includes the impact of short-term operational 

decisions. 

This result is important to help market participants or planning authorities in their decision-making processes (bids 

or investment decisions in storage assets) by determining correct opportunity costs (i.e., short-term prices and 

long-term expected values) with the co-optimization approach in the LRP model and therefore avoiding sub-optimal 

solutions from iterative processes (e.g., fixing the hydro reservoirs levels obtained from a medium-term model in a 

short-term operational model).

Looking forward, the LRP model could be applied to analyze energy and operating reserve markets in hydrothermal 

power systems in a more natural way than using the LDC approach.

Appendix A. Hourly Unit Commitment Model

The following equations describe the hourly UC model used as the benchmark to test the proposed models, which 

is a simplified version of the model in ref. [39] including the hydrothermal constraints in ref. [40].

min   ∑𝜔𝑝𝑡𝑝
𝜔
𝑝 ∙ 𝑠𝑢𝑡 ∙ 𝑆𝑈𝜔

𝑝𝑡 +  ∑𝜔𝑝𝑡𝑝
𝜔
𝑝 ∙ 𝑠𝑑𝑡 ∙ 𝑆𝐷𝜔

𝑝𝑡     +  ∑𝜔𝑝𝑡𝑝
𝜔
𝑝 ∙ 𝑓𝑡 ∙ 𝑈𝐶𝜔

𝑝𝑡  +  ∑𝜔𝑝𝑡𝑝
𝜔
𝑝 ∙ 𝑣𝑡 ∙ 𝑃𝜔

𝑝𝑡 + 
 ∑

𝜔𝑝𝑝𝜔
𝑝 ∙ 𝑣' ∙ 𝐸𝑁𝑆𝜔

𝑝 + ∑𝜔𝑝𝑝𝜔
𝑝 ∙ 𝑣'' ∙ 𝑅𝑁𝑆𝜔

𝑝

(A.1)

Subject to:

 ∑
𝑔𝑂𝜔

𝑝𝑔 + 𝑅𝑁𝑆𝜔
𝑝 ≥ 𝑜𝑝 ∀𝜔𝑝 (A.2)

 ∑
𝑔𝑃𝜔

𝑝𝑔 ― ∑
𝑠

𝐶𝜔
𝑝𝑠

𝜂𝑠
+ 𝐸𝑁𝑆𝜔

𝑝 = 𝑑𝑝 ∀𝜔𝑝 (A.3)

 𝑈𝐶𝜔
𝑝𝑡 ― 𝑈𝐶𝜔'

𝑝 ― 1𝑡 = 𝑆𝑈𝜔
𝑝𝑡 ― 𝑆𝐷𝜔

𝑝𝑡 ∀𝜔𝑝𝑡 𝜔'𝜖 𝑎(𝜔) (A.4)

 𝑃'𝜔
𝑝𝑡 + 𝑂𝜔

𝑝𝑡 ≤ (𝑝𝑡 ― 𝑝𝑡) ∙ (𝑈𝐶𝜔
𝑝𝑡 ― 𝑆𝑈𝜔

𝑝𝑡) ∀𝜔𝑝𝑡 (A.5)

 𝑃'𝜔
𝑝𝑡 + 𝑂𝜔

𝑝𝑡 ≤ (𝑝𝑡 ― 𝑝𝑡) ∙ (𝑈𝐶𝜔
𝑝𝑡 ― 𝑆𝐷𝜔

𝑝 + 1𝑡) ∀𝜔𝑝𝑡 (A.6)
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+  𝑃𝜔
𝑝𝑡 = 𝑝𝑡 ∙ 𝑈𝐶𝜔

𝑝𝑡 𝑃'𝜔
𝑝𝑡   ∀𝜔𝑝𝑡 (A.7)

 𝑃𝜔
𝑝ℎ ≤ 𝑝ℎ   ∀𝜔𝑝ℎ (A.8)

𝑅𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑝 ― 1𝑟 ― 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔

𝑝𝑟 + 𝑖𝜔
𝑝𝑟 ― 𝑆𝜔

𝑝𝑟 + ∑
𝑟' ∈  𝑅𝑈𝑅𝑟',𝑟

𝑆𝜔
𝑝𝑟'

𝑊𝑎𝑡𝑒𝑟 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

+ ∑
ℎ ∈  𝐻𝑈𝑅ℎ,𝑟

𝑃𝜔
𝑝ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠

―

∑
ℎ ∈  𝑅𝑈𝐻𝑟,ℎ

𝑃𝜔
𝑝ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑  𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

+ ∑
ℎ ∈  𝐻𝑃𝑅ℎ,𝑟

𝐶𝜔
𝑝ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑡𝑜 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

―

 ∑
ℎ ∈  𝑅𝑃𝐻𝑟,ℎ

𝐶𝜔
𝑝ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

= 0   ∀𝜔𝑝𝑟  𝜔'𝜖 𝑎(𝜔)

(A.9)

 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑝 ― 1𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔

𝑝𝑏 ― 𝑃𝜔
𝑝𝑏 + 𝐶𝜔

𝑝𝑏 = 0   ∀𝜔𝑝𝑏   𝜔'𝜖 𝑎(𝜔) (A.10)

 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔
|𝑃|𝑟 = 𝑟'

𝑟   ∀𝜔𝑟 (A.11)

 𝑟𝑟 ≤ 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔
𝑝𝑟 ≤ 𝑟𝑟   ∀𝜔𝑝𝑟 (A.12)

 𝑠𝑜𝑐𝑏 ≤ 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔
𝑝𝑏 ≤ 𝑠𝑜𝑐𝑏   ∀𝜔𝑝𝑏 (A.13)

 0 ≤ 𝑃𝜔
𝑝𝑔 ≤ 𝑝𝑔   ∀𝜔𝑝𝑔 (A.14)

 0 ≤ 𝐶𝜔
𝑝𝑠 ≤ 𝑝𝑠   ∀𝜔𝑝𝑠 (A.15)

 𝑈𝐶𝜔
𝑝𝑡, 𝑆𝑈𝜔

𝑝𝑡, 𝑆𝑈𝜔
𝑝𝑡 ∈ {0,1}   ∀𝜔𝑝𝑡 (A.16)

The objective function (A.1) minimizes the expected operational costs. Constraints (A.2) and (A.3) represent the 

operating reserve and the demand-balance equations respectively. Equation (A.4) is the logical relationship among 

the binary variables for UC. Constraints (A.5) to (A.7) ensure thermal unit production is within minimum and 

maximum capacity, while (A.8) ensures it for hydro units. Also, (A.9) defines the water balance for each reservoir 

considering the hydro topology. Constraint (A.10) defines the state of charge for each short-term ESS (e.g., 

batteries). Notice that constraints (A.9) and (A.10) are equivalent if, for example, a hydro reservoir has a pump unit 

which is not in a hydro basin and it has no hydro inflows. Constraint (A.11) establishes the final reservoir level at 

the last period of the time horizon. Equations (A.12) to (A.15) maintain bounds for the reservoir level, the state of 

charge, the power output, and the charged power per storage unit. Finally, (A.16) states that the commitment and 

connection variables are binary.

Appendix B. Load Duration Curve Model

This section shows the load levels formulation based on the modeling of hydrothermal dispatch problem in [40].

min   ∑𝜔𝑚𝑤𝑡𝑝
𝜔
𝑚 ∙ 𝑠𝑢𝑡 ∙ 𝑆𝑈𝜔

𝑚𝑤𝑡 + ∑𝜔𝑚𝑤𝑡𝑝
𝜔
𝑚 ∙ 𝑠𝑑𝑡 ∙ 𝑆𝐷𝜔

𝑚𝑤𝑡 + ∑𝜔𝑚𝑤𝑙𝑡𝑝
𝜔
𝑚 ∙ 𝑤𝑔𝑚𝑤𝑙 ∙ 𝑓𝑡 ∙ 𝑈𝐶𝜔

𝑚𝑤𝑡 + 
 ∑

𝜔𝑚𝑤𝑙𝑡𝑝
𝜔
𝑚 ∙ 𝑤𝑔𝑚𝑤𝑙 ∙ 𝑣𝑡 ∙ 𝑃𝜔

𝑚𝑤𝑙𝑡 + ∑𝜔𝑚𝑤𝑙𝑝
𝜔
𝑚 ∙ 𝑤𝑔𝑚𝑤𝑙 ∙ 𝑣' ∙ 𝐸𝑁𝑆𝜔

𝑚𝑤𝑙 + ∑𝜔𝑚𝑤𝑙𝑝
𝜔
𝑚 ∙ 𝑤𝑔𝑚𝑤𝑙 ∙ 𝑣'' ∙ 𝑅𝑁𝑆𝜔

𝑚𝑤𝑙

(B.1)

Subject to:

 ∑
𝑔𝑂𝜔

𝑚𝑤𝑙𝑔 + 𝑅𝑁𝑆𝜔
𝑚𝑤𝑙 ≥ 𝑜𝑚𝑤𝑙   ∀𝜔𝑚𝑤𝑙 (B.2)
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 ∑
𝑔𝑃𝜔

𝑚𝑤𝑙𝑔 ― ∑
𝑠

𝐶𝜔
𝑚𝑤𝑙𝑠

𝜂𝑠
+ 𝐸𝑁𝑆𝜔

𝑚𝑤𝑙 = 𝑑𝑚𝑤𝑙   ∀𝜔𝑚𝑤𝑙 (B.3)

 𝑃𝜔
𝑚𝑤𝑙 + 1𝑔 ≤ 𝑃𝜔

𝑚𝑤𝑙𝑔   ∀𝜔𝑚𝑤𝑙𝑔 (B.4)

 𝑈𝐶𝜔
𝑚𝑤𝑡 ― 𝑈𝐶𝜔'

𝑚 ― 1𝑤 + 1𝑡 = 𝑆𝑈𝜔
𝑚𝑤𝑡 ― 𝑆𝐷𝜔

𝑚𝑤𝑡   ∀𝜔𝑚𝑤𝑡   𝜔'𝜖 𝑎(𝜔) (B.5)

 𝑈𝐶𝜔
𝑚𝑤 + 1𝑡 ― 𝑈𝐶𝜔

𝑚𝑤𝑡 = 𝑆𝑈𝜔
𝑚𝑤 + 1𝑡 ― 𝑆𝐷𝜔

𝑚𝑤 + 1𝑡   ∀𝜔𝑚𝑡 ∀𝑤 > 1 (B.6)

 𝑃𝜔
𝑚𝑤𝑙𝑡 + 𝑂𝜔

𝑚𝑤𝑙𝑡 ≤ 𝑝𝑡𝑈𝐶𝜔
𝑚𝑤𝑡   ∀𝜔𝑚𝑤𝑡 (B.7)

 𝑃𝜔
𝑚𝑤𝑙𝑡 ≥ 𝑝𝑡𝑈𝐶𝜔

𝑚𝑤𝑡   ∀𝜔𝑚𝑤𝑡 (B.8)

 𝑃𝜔
𝑚𝑤𝑙ℎ ≤ 𝑝ℎ   ∀𝜔𝑚𝑤ℎ (B.9)

𝑅𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1𝑟 ― 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑟 + 𝑖𝜔
𝑚𝑟 ― 𝑆𝜔

𝑚𝑟 + ∑
𝑟' ∈  𝑅𝑈𝑅𝑟',𝑟

𝑆𝜔
𝑚𝑟'

𝑊𝑎𝑡𝑒𝑟 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

+ ∑
𝑤𝑙

∑
ℎ ∈  𝐻𝑈𝑅ℎ,𝑟

𝑤𝑔𝑚𝑤𝑙 ∙ 𝑃𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠

― ∑
𝑤𝑙

∑
ℎ ∈  𝑅𝑈𝐻𝑟,ℎ

𝑤𝑔𝑚𝑤𝑙 ∙ 𝑃𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑  𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

+ ∑
𝑤𝑙

∑
ℎ ∈  𝐻𝑃𝑅ℎ,𝑟

𝑤𝑔𝑚𝑤𝑙 ∙ 𝐶𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑡𝑜 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

―

 ∑
𝑤𝑙

∑
ℎ ∈  𝑅𝑃𝐻𝑟,ℎ

𝑤𝑔𝑚𝑤𝑙 ∙ 𝐶𝜔
𝑚𝑤𝑙ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

= 0   ∀𝜔𝑚𝑟   𝜔'𝜖 𝑎(𝜔)

(B.10)

 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑏 ― ∑
𝑤𝑙𝑤𝑔𝑚𝑤𝑙 ⋅ 𝑃𝜔

𝑚𝑤𝑙𝑏 + ∑
𝑤𝑙𝑤𝑔𝑚𝑤𝑙 ⋅ 𝐶𝜔

𝑚𝑤𝑙𝑏 = 0   ∀𝜔𝑚𝑏   𝜔'𝜖 𝑎(𝜔) (B.11)

 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔
|𝑀|𝑟 = 𝑟'

𝑟   ∀𝜔𝑟 (B12)

 𝑟𝑟 ≤ 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔
𝑚𝑟 ≤ 𝑟𝑟   ∀𝜔𝑚𝑟 (B.13)

 𝑠𝑜𝑐𝑏 ≤ 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔
𝑚𝑏 ≤ 𝑠𝑜𝑐𝑏   ∀𝜔𝑚𝑏 (B.14)

 0 ≤ 𝑃𝜔
𝑚𝑤𝑙𝑔 ≤ 𝑝𝑔   ∀𝜔𝑚𝑤𝑔 (B.15)

 0 ≤ 𝐶𝜔
𝑚𝑤𝑙𝑠 ≤ 𝑝𝑠   ∀𝜔𝑚𝑤𝑠 (B.16)

 𝑈𝐶𝜔
𝑚𝑤𝑡, 𝑆𝑈𝜔

𝑚𝑤𝑡, 𝑆𝑈𝜔
𝑚𝑤𝑡 ∈ {0,1}   ∀𝜔𝑚𝑤𝑡 (B.17)

The objective function (B.1) minimizes the expected operational costs such as (A.1) in the HM model. Constraints 

(B.2) to (B.17) have the same purpose as in the HM model. However, they are stated in term of the LDC time 

division, i.e., .𝑚,𝑤,𝑙

Moreover, the following considerations are particular for the LDC model: Equation (B.4) limits the production in 

consecutive load levels. Equations (B.5) and (B.6) represent the commitment constraints in the LDC model. This 

model considers startup and shutdown decisions within aggregation of load levels . For instance, if the 𝑤

aggregations of load levels are weekdays and weekend, then equations (B.5) and (B.6) define the commitment, 

startup, and shutdown decisions between weekdays and the following weekend and vice versa.

Equation (B.10) defines the water balance for each reservoir considering the hydro topology while (B.11) defines 

the state of charge for each short-term storage (e.g., batteries).

Appendix C. Linked Representative Periods Model
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This section describes the LRP model, which is a stochastic extension of the previous formulation developed in 

[20]. This model is a novel contribution to hydrothermal dispatch because it enables consideration of both short-

term storage (e.g., batteries) and seasonal storage simultaneously.

min   ∑𝜔𝑚𝑝𝜔
𝑚∑

𝑟𝑝,𝑘,𝑡𝑤𝑔𝑟𝑝 ∙ 𝑠𝑢𝑡 ∙ 𝑆𝑈𝜔
𝑟𝑝,𝑘,𝑡 + ∑

𝜔𝑚𝑝𝜔
𝑚∑

𝑡, (𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}𝑤𝑔𝑟𝑝 ∙ 𝑠𝑑𝑡 ∙ 𝑆𝐷𝜔
𝑟𝑝,𝑘,𝑡 + 

∑
𝜔𝑚𝑝𝜔

𝑚∑
𝑡, (𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}𝑤𝑔𝑟𝑝 ∙ 𝑓𝑡 ∙ 𝑈𝐶𝜔

𝑟𝑝,𝑘,𝑡 + ∑𝜔𝑚𝑝𝜔
𝑚∑

𝑡, (𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}𝑤𝑔𝑟𝑝 ∙ 𝑣𝑡 ∙ 𝑃𝜔
𝑟𝑝,𝑘,𝑡 + 

 ∑
𝜔𝑚𝑝𝜔

𝑚∑
(𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}𝑤𝑔𝑟𝑝 ∙ 𝑣' ∙ 𝐸𝑁𝑆𝜔

𝑟𝑝,𝑘 + ∑𝜔𝑚𝑝𝜔
𝑚∑

(𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}𝑤𝑔𝑟𝑝 ∙ 𝑣'' ∙ 𝑅𝑁𝑆𝜔
𝑟𝑝,𝑘

(C.1)

Subject to:

 ∑
𝑔𝑂𝜔

𝑟𝑝,𝑘,𝑔 + 𝑅𝑁𝑆𝜔
𝑟𝑝,𝑘 ≥ 𝑜𝑟𝑝,𝑘   ∀𝜔,𝑟𝑝,𝑘 (C.2)

 ∑
𝑔𝑃𝜔

𝑟𝑝,𝑘,𝑔 ― ∑
𝑠

𝐶𝜔
𝑟𝑝,𝑘,𝑠

𝜂𝑠
+ 𝐸𝑁𝑆𝜔

𝑟𝑝,𝑘 = 𝑑𝑟𝑝,𝑘   ∀𝜔,𝑟𝑝,𝑘 (C.3)

 𝑈𝐶𝜔
𝑟𝑝,𝑘,𝑡 ― 𝑈𝐶𝜔

𝑟𝑝,𝑘 ― 1,𝑡 = 𝑆𝑈𝜔
𝑟𝑝,𝑘,𝑡 ― 𝑆𝐷𝜔

𝑟𝑝,𝑘,𝑡   ∀𝜔,𝑟𝑝,𝑡 ∀𝑘 > 1 (C.4)

 𝑈𝐶𝜔
𝑟𝑝,𝑘,𝑡 ― ∑

𝑟𝑝' ∈ 𝑇𝑀𝑟𝑝',𝑟𝑝
𝑈𝐶𝜔'

𝑟𝑝',𝐾,𝑡 = 𝑆𝑈𝜔
𝑟𝑝,𝑘,𝑡 ― 𝑆𝐷𝜔

𝑟𝑝,𝑘,𝑡   ∀𝜔,𝑟𝑝,𝑡   ∀𝑘 = 1   𝜔'𝜖 𝑎(𝜔) (C.5)

 𝑃'𝜔
𝑟𝑝,𝑘,𝑡 + 𝑂𝜔

𝑟𝑝,𝑘,𝑡 ≤ (𝑝𝑡 ― 𝑝𝑡) ∙ (𝑈𝐶𝜔
𝑟𝑝,𝑘,𝑡 ― 𝑆𝑈𝜔

𝑟𝑝,𝑘,𝑡)   ∀𝜔,𝑟𝑝,𝑘,𝑡 (C.6)

 𝑃'𝜔
𝑟𝑝,𝑘,𝑡 + 𝑂𝜔

𝑟𝑝,𝑘,𝑡 ≤ (𝑝𝑡 ― 𝑝𝑡) ∙ (𝑈𝐶𝜔
𝑟𝑝,𝑘,𝑡 ― 𝑆𝐷𝜔

𝑟𝑝,𝑘 + 1, 𝑡)   ∀𝜔,𝑟𝑝,𝑘,𝑡 (C.7)

 𝑃𝜔
𝑟𝑝,𝑘,𝑡 = 𝑝𝑡𝑈𝐶𝜔

𝑟𝑝,𝑘,𝑡 + 𝑃'𝜔
𝑟𝑝,𝑘,𝑡   ∀𝜔,𝑟𝑝,𝑘,𝑡 (C.8)

 𝑃𝜔
𝑟𝑝,𝑘,ℎ ≤ 𝑝ℎ   ∀𝜔,𝑟𝑝,𝑘,ℎ (C.9)

𝑅𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑟 ― 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑟 + 𝑖𝜔
𝑟𝑝,𝑘,𝑟 ― 𝑆𝜔

𝑟𝑝,𝑘,𝑟 + ∑
𝑟' ∈  𝑅𝑈𝑅𝑟',𝑟

𝑆𝜔
𝑟𝑝,𝑘,𝑟'

𝑊𝑎𝑡𝑒𝑟 𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

+

∑
ℎ ∈  𝐻𝑈𝑅ℎ,𝑟

𝑃𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠

― ∑
ℎ ∈  𝑅𝑈𝐻𝑟,ℎ

𝑃𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑑  𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

+

 ∑
ℎ ∈  𝐻𝑃𝑅ℎ,𝑟

𝐶𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑓𝑟𝑜𝑚 ℎ𝑦𝑑𝑟𝑜 𝑝𝑙𝑎𝑛𝑡𝑠 𝑡𝑜 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑟

― ∑
ℎ ∈  𝑅𝑃𝐻𝑟,ℎ

𝐶𝜔
𝑟𝑝,𝑘,ℎ

𝑐ℎ
𝑃𝑢𝑚𝑝𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠

= 0   ∀𝜔,𝑟𝑝,𝑘,𝑟   𝜔'𝜖 𝑎(𝜔)

(C.10)

 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1,𝑟 ― 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑟 + ∑
(𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}[𝑅𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑟 ― 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑟] = 0   ∀𝜔𝑚𝑟   𝜔'𝜖 𝑎(𝜔) (C.11)

 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑏 ― 𝑃𝜔
𝑟𝑝,𝑘,𝑏 + 𝐶𝜔

𝑟𝑝,𝑘,𝑏 = 0   ∀𝜔,𝑟𝑝,𝑘,𝑏   𝜔'𝜖 𝑎(𝜔) (C.12)

 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔'
𝑚 ― 1,𝑏 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔

𝑚𝑏 + ∑
(𝑟𝑝,𝑘) ∈ {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}[𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔

𝑟𝑝,𝑘,𝑟 ― 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔'
𝑟𝑝,𝑘 ― 1,𝑟] = 0   ∀𝜔𝑚𝑏   𝜔'𝜖 𝑎(𝜔) (C.13)

 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔
|𝑀|𝑟 = 𝑟'

𝑟   ∀𝜔𝑟 (C.14)

 𝑟𝑟 ≤ 𝑅𝑖𝑛𝑡𝑒𝑟,𝜔
𝑚𝑟 ≤ 𝑟𝑟   ∀𝜔𝑚𝑟 (C.15)

 𝑟𝑟 ≤ 𝑅𝑖𝑛𝑡𝑟𝑎,𝜔
𝑟𝑝,𝑘,𝑟 ≤ 𝑟𝑟   ∀𝜔,𝑟𝑝,𝑘,𝑟 (C.16)

 𝑠𝑜𝑐𝑏 ≤ 𝑆𝑜𝐶𝑖𝑛𝑡𝑒𝑟,𝜔
𝑚𝑏 ≤ 𝑠𝑜𝑐𝑏   ∀𝜔𝑚𝑏 (C.17)

 𝑠𝑜𝑐𝑏 ≤ 𝑆𝑜𝐶𝑖𝑛𝑡𝑟𝑎,𝜔
𝑟𝑝,𝑘,𝑏 ≤ 𝑠𝑜𝑐𝑏   ∀𝜔,𝑟𝑝,𝑘,𝑏 (C.18)

 0 ≤ 𝑃𝜔
𝑟𝑝,𝑘,𝑔 ≤ 𝑝𝑔   ∀𝜔,𝑟𝑝,𝑘,𝑔 (C.19)

 0 ≤ 𝐶𝜔
𝑟𝑝,𝑘,𝑠 ≤ 𝑝𝑠   ∀𝜔,𝑟𝑝,𝑘,𝑠 (C.20)
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 𝑈𝐶𝜔
𝑟𝑝,𝑘,𝑡, 𝑆𝑈𝜔

𝑟𝑝,𝑘,𝑡, 𝑆𝑈𝜔
𝑟𝑝,𝑘,𝑡 ∈ {0,1}   ∀𝜔,𝑟𝑝,𝑘,𝑡 (C.21)

The objective function (C.1) also minimizes the expected operational costs such as (A.1) in the HM model. The 

operational costs associated with each RP are multiplied by the number of periods in the time horizon that are 

represented by it, i.e., multiplied by the weight of each RP. In addition, the intersection of both sets  {𝐶𝐼𝑝,𝑟𝑝,𝑘 ∩ 𝑀𝑃𝑚,𝑝}

guarantees that it is considering only the RPs belonging to the corresponding month. Constraints (C.2) to (C.21) 

have the same purpose as their equivalent ones in the HM model. However, they are stated in term of the RPs 

time division, i.e., .𝑟𝑝,𝑘

Moreover, the following considerations are specific to the LRP model: Equations (C.4) and (C.5) are the 

commitment constraints in the LRP model. Equation (C.4) is for all the hours inside the RP except for the first hour. 

For the first hour, (C.5) creates continuity between the RPs and prevents unnecessary startups by using a transition 

matrix, i.e., , to require that for any pair of RPs that transition from one to the other, the thermal unit status 𝑇𝑀𝑟𝑝',𝑟𝑝

in the last hour of the first, i.e., , is considered in the first hour of the second, i.e., .𝑟𝑝' 𝑟𝑝

Equations (C.10) to (c.13) represent the balance equations for both types of storage, i.e., hydro reservoirs and 

batteries. These equations create the continuity in storage across the entire time horizon that allows for the 

modeling of short-term and long-term storage simultaneously.
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Highlights

 Representation of short-term operational decisions in hydrothermal dispatch 
models.

 Integration of short-term storage (e.g., batteries) drives this representation.
 This paper compares two models: classic Load Duration Curve vs Linked-

Representative Periods.
 The Linked-Representative Periods model can determine hourly opportunity 

costs for short-term energy storage.
 These types of results cannot be obtained in the classic Load Duration Curve 

model.


