

Proactive Generation and Transmission Expansion Planning with storage considerations Publishing Research Results Isaac González May 23, 2018

BACKGROUND

Deregulated Market Environment

GENCOS

Conflicting interests

TRANSCO

Renewables, storage, Distributed generaiton

Time Representation

[2]

Bilevel Approaches

 Electricity Martket

Reactive

[1],[2],[5]

ONE-LEVEL GEPTEP: CO-OPTMIZATION MODEL (COM)

comillas.edu

BILEVEL GEPTEP PROACTIVE MODEL (PM)

comillas.<mark>ed</mark>u

BILEVEL GEPTEP: PROTACIVE MODEL (PM)

comillas.edu

CASE 2

- 9 Demand Nodes
- 5 generators (1 Hydro)
- 1 year (8764 hours)
- 4 RP (4 days)
- 6 Candidate Lines
- 3 Candidate Generators
- 1 Genco per Node

comillas.edu

comillas.edu

Investment Plan

RESULTS

Results

com<mark>ill</mark>as**.edu**

Benefits

Total Benefits COM = 421 M Total Benefits PM = 436 M

SUMMARY AND FUTURE WORK

We propose a bilevel geptep model that includes analysis of storage managment using a enhaced representative framework.

Is it shown that including a strategic framework to analyze competition in GEPTEP models can yield conterintuitive results compared to a co-optimzation framework.

Storage Investment Complete dual formulation Integrate Linearized Losses This work was supported by Project Grant ENE2016-79517-R, awarded by the Spanish Ministerio de Economía, Industria y Competitividad.

https://stexem.iit.comillas.edu/

comillas.edu

THANK YOU

References

- [1] P. Pisciella, M. Bertocchi, and M. T. Vespucci, "A leader-followers model of power transmission capacity expansion in a market driven environment," *Comput. Manag. Sci.*, vol. 13, no. 1, pp. 87–118, 2016.
- [2] D. A. Tejada-Arango, M. Domeshek, S. Wogrin, and E. Centeno, "Enhanced Representative Days and System States Modeling for Energy Storage Investment Analysis," *IEEE Trans. Power Syst.*, vol. 8950, no. c, pp. 1–1, 2018.
- [3] S. Jin, S. M. Ryan, and A. Sets, "A Tri-Level Model of Centralized Transmission and Decentralized Generation Expansion Planning for an Electricity Market — Part I," vol. 29, no. 1, pp. 132–141, 2014.
- [4] S. K. K. Ng, J. Zhong, and C. W. Lee, "A Game-Theoretic Study of the Strategic Interaction between Generation and Transmission Expansion Planning," 2009 IEEE/PES Power Syst. Conf. Expo., pp. 1–10, 2009.
- [5] D. Pozo, J. Contreras, and E. Sauma, "If you build it, he will come: Anticipative power transmission planning," *Energy Econ.*, vol. 36, pp. 135–146, 2013.
- [6] S. You, S. W. Hadley, M. Shankar, and Y. Liu, "Co-optimizing generation and transmission expansion with wind power in large-scale power grids— Implementation in the US Eastern Interconnection," *Electr. Power Syst. Res.*, vol. 133, pp. 209–218, 2016.

REPRESENTATIVE PERIODS

Storage Equations

INTRADAY

INTERDAY

$$\begin{split} & vLevel_{yphd} \\ &= vLevel_{y,p-M,h,d} + vLevel_{y=0,p=1,h,d} \\ &+ \sum_{p'}^{p} \sum_{p''} \left(pInflow_{yp''hd} - vSpill_{yp''hd} - \frac{vProd_{yp''hd}}{pProdfct_h} + \frac{vCon_{yp''hd}}{pProdfct_h} \right) \\ &: \psi'_{yphd} \quad \forall h \in GED, p < pf, \quad \forall yd, \end{split}$$

with
$$p' = p - M + 1$$
 and $p'' \in H(p', p'')$

REPRESENTATIVE PERIODS

Representative Periods with Transition Matrix and Cluster Index

We include the <u>transition matrix and cluster</u> <u>index</u> ideas of System States Models into the representative periods, so that it is possible to link chronological information among the representatives such as storage levels or unit commitments

