

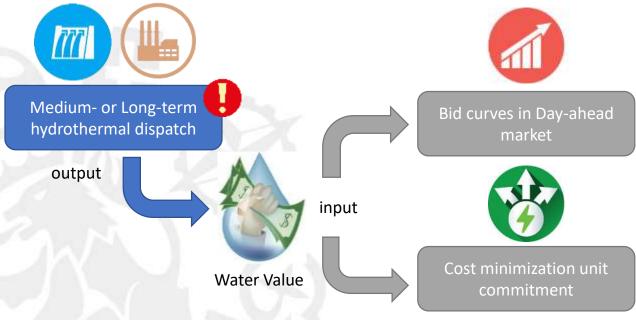
Analysis of storage and water value in power systems for policymaking on renewable energies

Session 70: Policy-Enabling Models for the Power Sector

Diego A. Tejada-Arango, Sonja Wogrin, Afzal S. Siddiqui and Efraim Centeno.

Future context for Hydrothermal Coordination Model

As intermittent renewable energy sources production increases (e.g. solar and wind), the potential deployment of energy storage also increases.


Additionally, Battery Energy Storage Systems (BESS) cost is expected to decrease in next 10 to 15 years. Intra-day storage (e.g. BESS) dispatch could change seasonal storage (e.g. hydro units) dispatch and opportunity costs (i.e. the water value).

comillas.<mark>edu</mark>

In the next future, high penetration of intermittent generation is going to stress the electric system operation. Storage hydro, pumped storage hydro plants, and BESS are going to play a much more important role due to their flexibility and complementary use with intermittent generation

hydrothermal scheduling and short-term operation

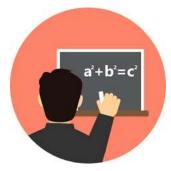
comillas.edu

Existing Medium- or Long-term hydrothermal dispatch models only give the water value in a weekly or monthly basis. Hourly signals are neglected due to the time resolution.

So, Research Questions...

- Are short-term storage decisions changing the water value of long-term storage?
- How much do short-term storage decisions affect the water value of long-term?

<u>Hypothesis</u>: Short-term energy storage decisions in energy and reserve markets impact the water value (or opportunity cost) of long-term storage.


comillas.edu

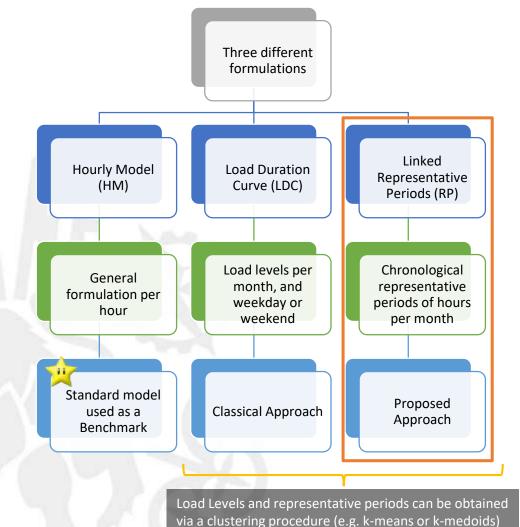
29th European Conference on Operational Research VALENCIA. JULY 8-11, 2018

Mathematical Formulation and Models

General Formulation

Objective function

 Minimize the total expected variable costs plus penalties for energy and power not served


Variables

- binary: Commitment, startup and shutdown of thermal units
- Thermal, hydro units, renewable and pumped storage hydro output
- storage levels (reservoirs and BESS)

Operational constraints

- Water balance with stochastic inflows
- Load balance and operating reserve
- Detailed hydro basin modeling
- Thermal, storage hydro and pumped-storage hydro operation constraints

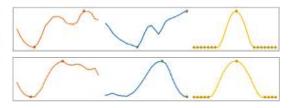
Mixed integer linear programming (MIP)

comillas.<mark>edu</mark>

Demand and Variable Renewable Energy Sources

Hourly Model

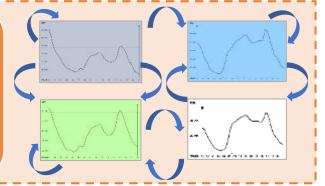
Hourly time series for demand, wind, and solar (8760 hours)


Load Duration Curve Model

Monthly demand, wind, and solar with several load levels. All the weekdays (weekends) of the same month are similar. For example: 12 load levels.

Linked Representative Periods

Time series for demand, wind, and solar per representative period. For example: two representative periods each one with 24h.



Linked Representative Periods – Proposed Approach

We include <u>transition matrix and</u> <u>cluster index</u> information into the representative periods, so that it is possible to link chronological information among the representatives such as storage levels and unit commitments

<u>Transition Matrix</u>: Square matrix used to describe the transitions among representative periods.

	rp01	rp02	rp03	rp04	rp05	rp06	rp07	rp08	rp09	rp10	rp11	rp12
rp01	2	4	1	0								
rp02	3	4	2	3				1				
rp03	0	2	1	2								
rp04	2	3	0	1								
rp05					0	3	0	2				
rp06					2	3	1	2				
rp07					1	1	2	0				
rp08					2	1	1	6	1			
rp09									1	2	0	2
rp10									0	1	0	2
rp11									2	0	12	1
rp12									2	0	3	2

<u>Cluster Index</u>: Each hour belongs to only one hour of one representative period.

\rightarrow	rp3.k1 to rp3.k24
\rightarrow	rp2.k1 to rp2.k24
÷	
\rightarrow	rp24.k1 to rp24.k24
\rightarrow	rp21.k1 to rp21.k24
:	
\rightarrow	rp46.k1 to rp46.k24
\rightarrow	rp46.k1 to rp46.k24
	$\begin{array}{c} \uparrow \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

<u>Note</u>: Representative periods are selected for each uncertainty node in the scenario tree. For instance, there are 4 representative periods per month in the transition matrix shown in this slide.

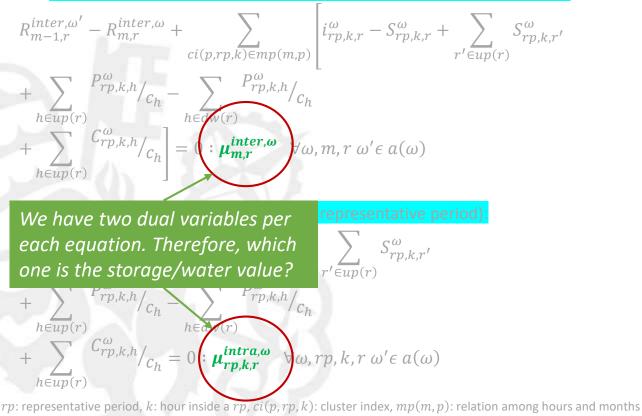
RP Storage Balance Constraint

In the linked representative periods we have two storage balance equations:

Inter-day storage balance (among an aggregation of hours, e.g. month):

$$\begin{split} R_{m-1,r}^{inter,\omega'} &- R_{m,r}^{inter,\omega} + \sum_{ci(p,rp,k)\in mp(m,p)} \left[i_{rp,k,r}^{\omega} - S_{rp,k,r}^{\omega} + \sum_{r'\in up(r)} S_{rp,k,r'}^{\omega} \right] \\ &+ \sum_{h\in up(r)} \frac{P_{rp,k,h}^{\omega}}{c_h} - \sum_{h\in dw(r)} \frac{P_{rp,k,h}^{\omega}}{c_h} \\ &+ \sum_{h\in up(r)} \frac{C_{rp,k,h}^{\omega}}{c_h} \right] = 0 : \mu_{m,r}^{inter,\omega} \quad \forall \omega, m, r \; \omega' \in a(\omega) \end{split}$$

Intra-day storage balance (inside the representative period):


$$\begin{split} R_{rp,k-1,r}^{intra,\omega'} &- R_{rp,k,r}^{intra,\omega} + i_{rp,k,r}^{\omega} - S_{rp,k,r}^{\omega} + \sum_{r' \in up(r)} S_{rp,k,r'}^{\omega} \\ &+ \sum_{h \in up(r)} \frac{P_{rp,k,h}^{\omega} / c_h}{c_h} - \sum_{h \in dw(r)} \frac{P_{rp,k,h}^{\omega} / c_h}{c_h} \\ &+ \sum_{h \in up(r)} \frac{C_{rp,k,h}^{\omega} / c_h}{c_h} = 0 : \mu_{rp,k,r}^{intra,\omega} \quad \forall \omega, rp, k, r \; \omega' \epsilon \; a(\omega) \end{split}$$

rp: representative period, k: hour inside a rp, ci(p, rp, k): cluster index, mp(m, p): relation among hours and months

RP Storage Balance Constraint

In the linked representative periods we have two storage balance equations:

Inter-day storage balance (among an aggregation of hours, e.g. month):

comillas.edu

Storage Value using Linked Representative Periods

In fact, we need both dual variables:

$$\mu_{pr}^{\omega} = \sum_{(rp,k)\in ci(p,rp,k)} \sum_{m\in mp(m,p)} \frac{1}{p_m^{\omega}} \left(\frac{\mu_{rp,k,r}^{intra,\omega}}{w_{rp}} + \mu_{m,r}^{inter,\omega} \right)$$

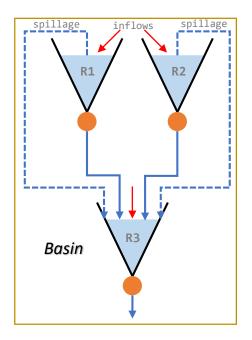
Therefore, we can obtain hourly the storage/water value for short- and long-term storage using the linked representative periods formulation, which allows us to determine the interaction between BESS and hydro reservoir in a stochastic hydrothermal coordination model

0 0

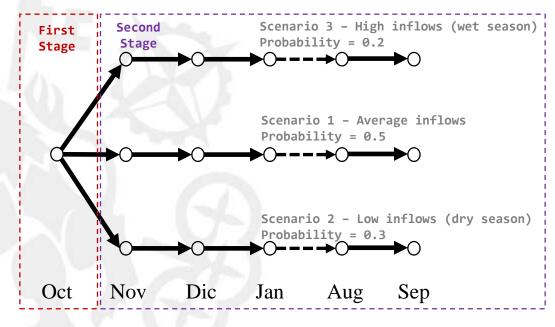
 p_m^{ω} : scenario probability at uncertainty node m (aggregation of hours) w_{rp} : weight of representative period rp

comillas.edu

Case Study



Stylized Spanish Case for 2030


- Time scope: 1 year (2030)
- Hourly demand profile was taken from Vision 1 in Ten-Year Network Development Plan 2016 of ENTSO-E
- Hourly wind and solar production profiles. The total renewable penetration is 37%
- 8 generation technologies are considered:
 - Nuclear: 1 unit
 - o Coal: 4 units
 - CCGT: 4 units
 - OCGT: 3 units
 - Fuel oil gas: 1 unit
 - Run of river: 1 unit
 - Hydro: 3 plant in a hydro subsystem (Basin)
 - BESS: 1 battery energy storage systems (1 cycle per day: 4h = 800MWh/200MW)
 - Scenario tree representing monthly uncertainty on hydro inflows

Scenario tree

- Stochastic optimization: Best decision when future is uncertain (with a known probability)
- Discrete probability function (i.e., scenario tree)

Models and Sensitivities

Hourly Model (HM) used as a benchmark for results

• 8760 hours

Load Duration Curve Model (LDC) – Classical Approach

• 12 load levels per month: 6 for weekdays and 6 for weekend

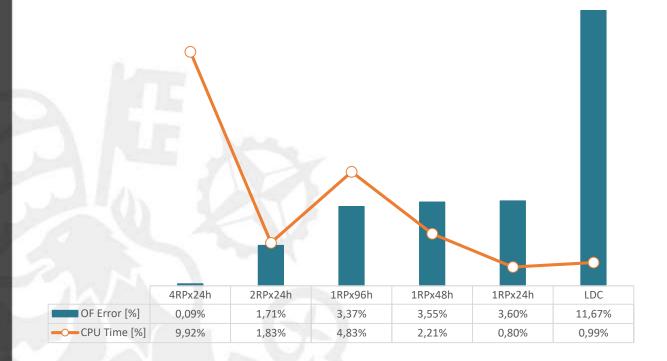
Linked Representative Periods – Proposed Approach

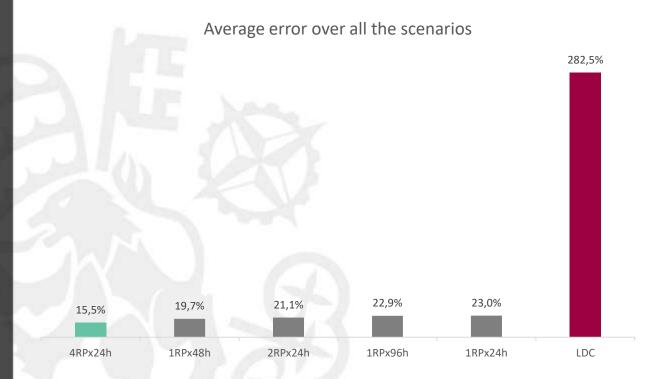
- 1 representative period with 24h per month (1RPx24h)
- 1 representative period with 48h per month (1RPx48h)
- 1 representative period with 96h per month (1RPx96h)
- 2 representative periods with 24h per month (2RPx24h)
- 4 representative periods with 24h per month (4RPx24h)

Is it better to have longer rp per month sharing information? or is it better to have shorter rp per month sharing information among them and between months?

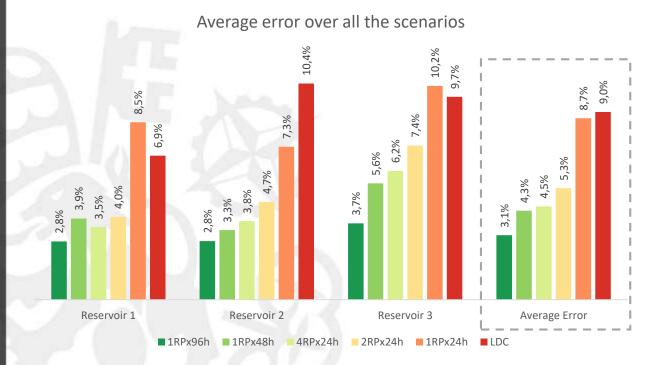
comillas.edu

Results

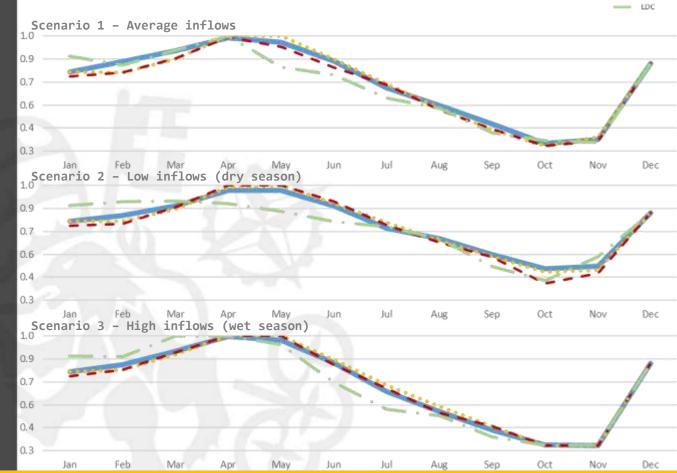



Spoiler Alert!...

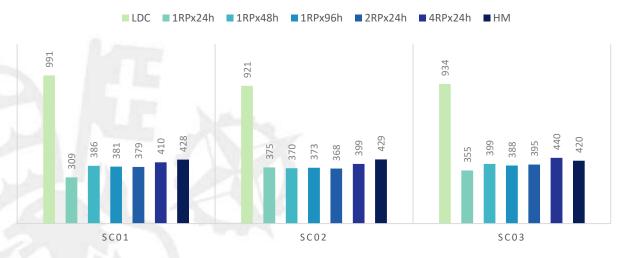
Criterion	Best performance	Second best performance	Second worst performance	Worst performance	
Objective Function	4RPx24h	2RPx24h	<mark>1RPx24h</mark>	LDC	
CPU Time	<mark>1RPx24h</mark>	LDC	<mark>1RPx96h</mark>	4RPx24h	
Production	<mark>4RPx24h</mark>	2RPx24h	<mark>1RPx24h</mark>	LDC	
Reservoir Level	<mark>1RPx96h</mark>	1RPx48h	<mark>1RPx24h</mark>	LDC	
BESS number of cycles	4RPx24h	1RPx48h	<mark>1RPx24h</mark>	LDC	
Marginal Cost	4RPx24h	1RPx96h	<mark>1RPx24h</mark>	LDC	
Water value	4RPx24h	2RPx24h	LDC	1RPx24	
BESS storage value	<mark>4RPx24h</mark>	1RPx48h	<mark>1RPx24h</mark>	LDC	


Objective function performance

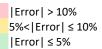
Operational Planning Results Error on Production - Summary



Operational Planning Results Error on Hydro Reservoir Level

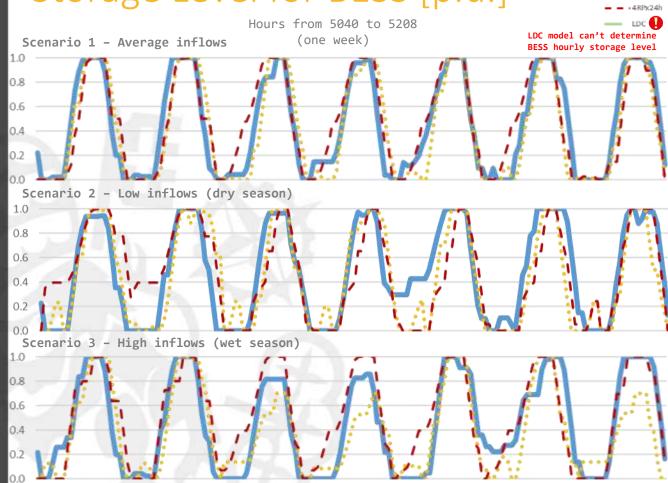

comillas<mark>.edu</mark>

Storage Level of Reservoir 1 [p.u.]



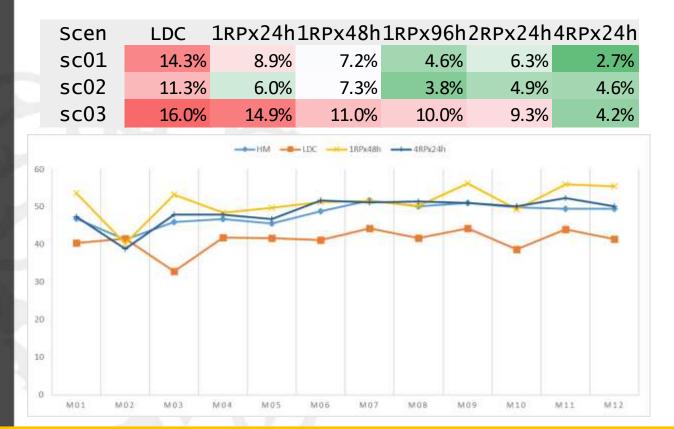
comillas.edu

Operational Planning Results BESS Number of Cycles



Scen	LDC	1RPx24h	1RPx48h	1RPx96h	2RPx24h	4RPx24h
sc01	-132%	28%	10%	11%	11%	4%
sc02	-115%	13%	14%	13%	14%	7%
sc03	-122%	15%	5%	8%	6%	- 5%

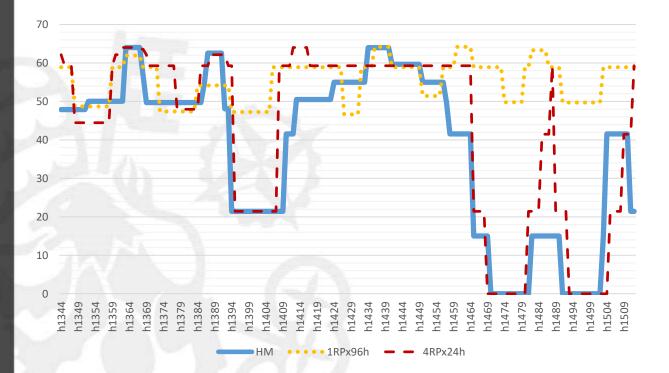
The full cycles are estimated using the total charge/discharge energy and divided by the energy capacity of the BESS Cycle life as the minimum of the full charge/discharge rounded.


Storage Level for BESS [p.u.]

HM
18Px96h

comillas.edu

Economic Planning Results Marginal Cost (Price) Error


comillas.<mark>edu</mark>

Economic Planning Results The Water Value Error

Scen	Storage Tech	LDC	1RPx24h	1RPx48h	1RPx96h	2RPx24h	4RPx24h
sc01	Reservoir1_Basin1	18.5%	14.8%	4.8%	0.3%	5.4%	0.1%
sc01	Reservoir2_Basin1	9.4%	14.8%	4.8%	0.3%	5.0%	0.1%
sc01	Reservoir3_Basin1	28.3%	0.5%	5.2%	0.3%	6.9%	0.2%
sc02	Reservoir1_Basin1	9.9%	6.0%	7.2%	0.7%	1.6%	1.2%
sc02	Reservoir2_Basin1	9.1%	6.0%	7.2%	0.7%	1.6%	1.2%
sc02	Reservoir3_Basin1	20.5%	12.7%	15.1%	1.2%	2.9%	2.7%
sc03	Reservoir1_Basin1	8.5%	26.9%	12.0%	16.5%	10.7%	2.3%
sc03	Reservoir2_Basin1	4.4%	26.9%	14.9%	16.0%	11.2%	1.5%
sc03	Reservoir3_Basin1	6.1%	47.7%	9.4%	19.8%	6.7%	6.9%

|Error| > 10% 5%<|Error| ≤ 10% |Error| ≤ 5% -

Storage Value for BESS [€/MWh]

comillas.edu

comillas.edu

Conclusions

- Are short-term storage decisions changing the water value of long-term storage?
 - A. Yes, the classical approach (LDC) shows the worst performance when we consider short-term storage (BESS) in the hydrothermal coordination problem
- How much do short-term storage decisions affect the water value of long-term?
 - A. The LDC approach underestimate the water value between 5% to 30% for long-term hydro reservoirs

<u>Hypothesis</u>: Short-term energy storage decisions in energy and reserve markets impact the water value (or opportunity cost) of long-term storage.

comillas.edu

Summary...

The context	Increase of short-term energy storage (e.g. BESS) in power systems due to the accommodation of renewable energy sources. This changes the opportunity cost of seasonal storage (e.g. hydro reservoirs).					
The drawback	No hourly water value in classical hydrothermal coordination methodologies. This doesn't enable the co-optimization of short-term and long-term storage.					
Our contribution	Propose a new optimization model for hydrothermal coordination in which hourly water values (short-term signals) are co-optimize with seasonal storage (long-term water value signals).					
The potential	1. Analysis of energy and reserve markets in the short-term operation for policymaking					
use	2. Medium-term hydrothermal dispatch considering short-term energy storage such as BESS					

Main References

- G. Strbac et al., "Opportunities for Energy Storage: Assessing Whole-System Economic Benefits of Energy Storage in Future Electricity Sys-tems," IEEE Power Energy Mag., vol. 15, no. 5, pp. 32–41, Sep. 2017.
- D. A. Tejada-Arango, M. Domeshek, S. Wogrin, and E. Centeno, "En-hanced Representative Days and System States Modeling for Energy Storage Investment Analysis," IEEE Trans. Power Syst., pp. 1–1, 2018.
- Bjørndal, E., Bjørndal, M., Gribkovskaia, V., 2013. Congestion Management in the Nordic Power Market – Nodal Pricing versus Zonal Pricing (No. SNF Report No 15/12). Institute for Research in Economics and Business Administration (SNF).
- Helseth, A., Fodstad, M., Askeland, M., Mo, B., Nilsen, O.B., Pérez-Díaz, J.I., Chazarra, M., Guisández, I., 2017a. Assessing hydropower operational profitability considering energy and reserve markets. IET Renew. Power Gener. 11, 1640–1647. https://doi.org/10.1049/iet-rpg.2017.0407
- Helseth, A., Mo, B., Fodstad, M., 2017b. Water values in future power markets, in: 2017 IEEE Manchester PowerTech. Presented at the 2017 IEEE Manchester PowerTech, pp. 1–5. https://doi.org/10.1109/PTC.2017.7980885
- Reneses, J., Barquín, J., García-González, J., Centeno, E., 2016. Water value in electricity markets. Int. Trans. Electr. Energy Syst. 26, 655–670. https://doi.org/10.1002/etep.2106
- A. Helseth, M. Fodstad, and B. Mo, "Optimal Medium-Term Hydro-power Scheduling Considering Energy and Reserve Capacity Markets," IEEE Trans. Sustain. Energy, vol. 7, no. 3, pp. 934–942, Jul. 2016.

This work was supported by Project Grant ENE2016-79517-R, awarded by the Spanish Ministerio de Economía, Industria y Competitividad.

https://stexem.iit.comillas.edu/