

Storage Allocation and **Investment** Optimization for **Transmission Constrained Networks Considering Losses** and High Renewable Penetration

Universidad Pontificia Comillas, Spain Sonja Wogrin, Dean Yacar, Diego A. Tejada-Arango

ICAI COMILLAS

Context and Motivation

Context

Renewable Energy Sources (RES)

- Increase of RES share in the following years
- Intermittency issues and no output control

Energy Storage Systems (ESS)

- Promising option to soften renewable intermittency and increase flexibility
- New developments are reducing the costs, especially for electrical ESS

Motivation

Wide number of ESS technologies and characteristics
Different energy/power ratios
Multiple services: time shifting, ramping etc.

Real Power System characteristics

- Network Congestion
- Transmission Losses

Research Questions

• What is the impact of network congestion or transmission losses on ESS allocation/ investment decisions?

 How does the level of renewable penetration in a power system change the ESS investment decisions?

Optimization Model and Metrics

Optimization Model General Description

Objective Function:

Minimize production costs

Subject to:

- Power balance constraint
- Storage balance constraint
- Charge/discharge limits
- Storage limits
- Final storage level condition
- Thermal units limits
- Ramp limits for thermal units
- Maximum Storage to be installed
- Transmission network constraints (DC-OPF)
- Piecewise Linear Approximation for transmission losses

Metric	Purpose	Equation
Overall Capacity Metric (OM)	To compare the maximum storage level in MWh attained over the time horizon to the actual amount of capacity of that technology installed at each node	$OM_{jn} = 1 - \frac{max_t\{s_{jn}(t)\}}{k_{jn}}$
Cycling Metric (CM)	To keep tracking of how many full charging cycles a technology goes through over the total time horizon at each node	$CM_{jn} = \frac{\sum_{t \in T} \left[r_{jn}^c(t) \cdot \Delta t \right]}{k_{jn}}$
Overall Storage Level Metric (OSL)	To provide an idea of how much energy each technology stores throughout a day for each scenario in comparison to the base case of an unconstrained network	$OSL_{j} = \frac{\sum_{n,t} s_{jn}(t)}{\sum_{n,t} s_BaseCase_{jn}(t)}$

Case Study

Modified IEEE 14 Bus System

Data information from:

S. Wogrin y D. F. Gayme, «Optimizing Storage Siting, Sizing, and Technology Portfolios in Transmission-Constrained Networks», IEEE Trans. Power Syst., vol. 30, n.o 6, pp. 3304-3313, nov. 2015.

Storage Allocation Results

Impact of Transmission Losses

The introduction of losses into the model led to changes in the *spatial distribution of storage capacity* and the temporal usage of each technology

comillas.edu

Impact of Transmission Congestion

No Congestion

Congestion

comillas.edu

Results obtained for the Metrics

Cara Studie	Tash	C	М	0	М	OSL
Case Study	1 ech	n3	n9	n3	n9	
	PSH	0.0025	0.0025	0.9999	0.9999	1.00
Congestion = NO	CAES	0.0031	0.0031	1.0000	1.0000	0.00
Losses = NO	LION	1 7335	1 7335	0.9286	0.9286	1.00
	FES	5.3050	5.3050	0.9286	0.9286	1.00
and the second sec	PSH	0.0037	0.0011	0.9998	0.9999	1.24
Congestion = NO	CAES	0.0000	0.0000	1.0000	1.0000	0.00
Losses = YES	LION	3.1188	1.0445	0.8863	0.9799	1.00
	FES	18.0912	10.6613	0.7088	0.8669	1.00
	PSH	0.1265	0.0000	0.9918	1.0000	15.53
Congestion =	CAES	0.0000	0.0000	1.0000	1.0000	0.00
YES	LION	1 1742	2.1102	0.0937	1.0000	1.07
Losses = NO	FES	6.6397	0.0000	0.2446	1.0000	1.11
	PSH	0.0898	0.0000	0.9923	1.0000	15.80
Congestion =	CAES	0.0000	0.0000	1.0000	1.0000	0.00
I ES	LION	1 0396	0.0000	0.1081	1.0000	1.07
Losses = YES	FES	6.1778	0.0000	0.2582	1.0000	1.09

The CM indicates that FES goes through the most full cycles of any technology in the portfolio. This is likely attributed to its short ramp time which allows it to fully charge and discharge within a single timestep.

When losses are introduced, the number of cycles more than triples at node 3 and doubles at node 9 even though the overall capacity remains unchanged.

Results obtained for the Metrics

Care Stude	Tash	C	М	0	OSL		
Case Study	1 ech	n3	n9	n3	n9		
	PSH	0.0025	0.0025	0.9999	0.9999	1.00	
Congestion = NO	CAES	0.0031	0.0031	1.0000	1.0000	0.00	
Losses = NO	LION	1.7335	1.7335	0.9286	0.9286	1.00	
	FES	5.3050	5.3050	0.9286	0.9286	1.00	
and the second	PSH	0.0037	0.0011	0.9998	0.9999	1.24	
Congestion = NO	CAES	0.0000	0.0000	1.0000	1.0000	0.00	
Losses = YES	LION	3.1188	1.0445	0.8863	0.9799	1.00	
	FES	18.0912	10.6613	0.7088	0.8669	1.00	
	PSH	0.1265	0.0000	0.9918	1.0000	15.53	
Congestion =	CAES	0.0000	0.0000	1.0000	1.0000	0.00	
YES	LION	1.1742	2.1102	0.0937	1.0000	1.07	
Losses = NO	FES	6.6397	0.0000	0.2446	1.0000	1.11	
	PSH	0.0898	0.0000	0.9923	1.0000	15.80	
Congestion =	CAES	0.0000	0.0000	1.0000	1.0000	0.00	
I ES	LION	1.0396	0.0000	0.1081	1.0000	1.07	
Losses = YES	FES	6.1778	0.0000	0.2582	1.0000	1.09	

The OM indicates that in a non-congested network, the capacity allocated in node 3 is almost fully used for all the technologies. However, when the network is congested, the allocation of FES capacity is not used due to the transmission constraints, and OM metrics shows how almost 75% of this capacity is unused.

Results obtained for the Metrics

Corres Stracker	Tal	C	М	0	М	OSL
Case Study	1 ecn	n3	n9	n3	n9	
	PSH	0.0025	0.0025	0.9999	0.9999	1.00
Congestion = NO	CAES	0.0031	0.0031	1.0000	1.0000	0.00
Losses = NO	LION	1.7335	1.7335	0.9286	0.9286	1.00
	FES	5.3050	5.3050	0.9286	0.9286	1.00
	PSH	0.0037	0.0011	0.9998	0.9999	1.24
Congestion = NO	CAES	0.0000	0.0000	1.0000	1.0000	0.00
Losses = YES	LION	3.1188	1.0445	0.8863	0.9799	1.00
	FES	18.0912	10.6613	0.7088	0.8669	1.00
	PSH	0.1265	0.0000	0.9918	1.0000	15.53
Congestion =	CAES	0.0000	0.0000	1.0000	1.0000	0.00
YES	LION	1.1742	2.1102	0.0937	1.0000	1.07
Losses = NO	FES	6.6397	0.0000	0.2446	1.0000	1.11
C	PSH	0.0898	0.0000	0.9923	1.0000	15.80
Congestion =	CAES	0.0000	0.0000	1.0000	1.0000	0.00
I ES	LION	1.0396	0.0000	0.1081	1.0000	1.07
Losses = YES	FES	6.1778	0.0000	0.2582	1.0000	1.09

The OSL illustrates this trend with an increase of 24% in PSH storage usage midday, allowing a system operator to dissipate stored energy at the evening peaks. For PSH storage network congestion increased the OSL fifteen-fold system-wide from the base case. However, considering losses yielded no significant changes.

Storage Investment Results

Impact of Renewable Penetration on Investment per Technology [MWh]

Casa Study	Tech Wind production						
Case Study	Tech	x 0.25	x 0.50	x 1.0	x 2.0	x 2.5	x 3.0
	PSH	0	0	0	0	9	206
Congestion = NO	CAES	0	0	0	0	103	535
Losses = NO	LION	0	0	0	0	0	55
	FES	200	200	211	237	298	0
	PSH	0	0	0	0	19	211
Congestion = NO	CAES	0	1	0	0	123	538
Losses = YES	LION	0	0	0	0	0	57
	FES	204	204	217	257	312	0
1	PSH	0	0	0	0	49	398
Congestion = YES	CAES	1	1	0	0	209	965
Losses = NO	LION	0	0	0	0	14	116
	FES	188	266	212	363	309	16
	PSH	0	0	0	0	53	373
Congestion = YES	CAES	0	1	0	0	204	818
Losses = YES	LION	0	0	0	0	13	117
	FES	184	262	221	361	326	17

- For the cases at or below standard wind production, FES was the only storage technology invested in. This implies that the need for FES capacity may primarily be to provide general load balance as opposed to just dealing with fluctuations from volume of wind generation.
- However, when wind production rose there grew a need for largescale energy reservoirs instead of fast energy storage technology such as FES.

comillas.edu

FES investment per node [MWh]

Congestion = NO & Losses = NO														Co	nges	tion	= NO) & L	osse	s = Y	ES							
x 3.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x 2.50	21	21	21	21	21	21	21	21	21	21	21	21	21	21	30	18	49	30	13	42	19	19	19	10	6	15	26	16
x 2.00	17	17	17	17	17	17	17	17	17	17	17	17	17	17	13	20	39	26	9	37	16	16	16	8	5	14	23	16
x 1.00	15	15	15	15	15	15	15	15	15	15	15	15	15	15	10	12	26	25	3	29	14	14	14	9	5	12	23	21
x 0.50	14	14	14	14	14	14	14	14	14	14	14	14	14	14	9	11	19	26	2	20	16	16	13	10	4	11	23	24
x 0.25	14	14	14	14	14	14	14	14	14	14	14	14	14	14	9	11	18	23	4	15	17	17	14	11	4	12	23	26
				Co	nges	tion	= YE	5&1	Losse	es = N	0		1					Co	nges	tion =	= YES	5 & I	osse	s = Y	ES			
	-	_			0	0	0	0	Ο	Δ	0	0	0	0	0	0	12	1	0	0	0	0	-		0	0	0	0
x 3.00	0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	15	1	0	0	0	0	0	0	0	0	0	0
x 3.00 x 2.50	0	0	13 189	0 17	5	7	14	14	12	11	9	8	8	0 10	5	5	198	1	6	30	10	0 10	0 10	0 5	3	8	12	9
x 3.00 x 2.50 x 2.00	0 2 4	0 2 25	13 189 281	0 17 10	0 5 1	7 2	14 7	14 7	12 6	11 5	9 4	8 2	8 3	0 10 4	5 1	5 24	198 275	1 15 6	6 1	30 15	10 6	0 10 6	0 10 6	0 5 3	0 3 1	8 4	12 6	9 6
x 3.00 x 2.50 x 2.00 x 1.00	0 2 4 0	0 2 25 4	13 189 281 137	0 17 10 34	0 5 1 0	0 7 2 0	14 7 14	0 14 7 14	0 12 6 6	11 5 2	9 4 0	8 2 0	8 3 0	0 10 4 1	0 5 1 0	5 24 3	198 275 135	1 15 6 36	6 1 0	0 30 15 3	0 10 6 6	0 10 6 6	0 10 6 1	0 5 3 2	0 3 1 0	8 4 6	12 6 12	9 6 10
x 3.00 x 2.50 x 2.00 x 1.00 x 0.50	0 2 4 0 0	0 2 25 4 1	13 189 281 137 66	0 17 10 34 116	0 5 1 0 0	0 7 2 0 0	14 7 14 34	0 14 7 14 34	12 6 6 12	11 5 2 3	9 4 0 0	0 8 2 0 0	0 8 3 0 0	0 10 4 1 0	0 5 1 0 0	0 5 24 3 1	198 275 135 66	1 15 6 36 117	6 1 0 0	0 30 15 3 5	0 10 6 20	0 10 6 20	0 10 6 1 0	0 5 3 2 2	0 3 1 0 1	8 4 6 5	12 6 12 13	9 6 10 13
x 3.00 x 2.50 x 2.00 x 1.00 x 0.50 x 0.25	0 2 4 0 0 0	0 2 25 4 1 1	13 189 281 137 66 50	0 17 10 34 116 81	0 5 1 0 0 0	0 7 2 0 0 0	14 7 14 34 24	0 14 7 14 34 24	12 6 6 12 6	11 5 2 3 1	9 4 0 0 0	0 8 2 0 0 0	0 8 3 0 0 0	0 10 4 1 0 0	0 5 1 0 0 0	0 5 24 3 1 1	198 275 135 66 50	1 15 6 36 117 81	0 6 1 0 0	0 30 15 3 5 1	0 10 6 20 10	0 10 6 20 10	0 10 6 1 0 0	0 5 3 2 2 1	0 3 1 0 1 0	8 4 6 5 5	12 6 12 13 12	9 6 10 13 13

- The transmission losses help to distinguish among the nodes for investment decisions in energy storage.
- However, if the network is congested then the investment decision are mainly driven by the network constraints. In this case, the network losses help to distinguish among the areas of the network that are not congested.

ICAI COMILLAS

Conclusions and Future Research

Summary...

In an area with no congestion problems, losses are important to distinguish among the nodes in order to allocate ESS

Congestion is more relevant than losses and drives the allocation and investment decisions

Level of renewable penetration alters the optimal ESS technology investment decisions

Future work...

Use a more detailed model, such as Second Order Cone Programming (SOCP), in order to consider reactive and active power.

Stochastic model for uncertainty representation of multiple renewable profiles as scenarios in the future operation.

This work was supported by Project Grant ENE2016-79517-R, awarded by the Spanish Ministerio de Economía, Industria y Competitividad.

https://stexem.iit.comillas.edu/